Global higher integrability of jacobians on bounded domains
Jeff Hogan; Chun Li; Alan McIntosh; Kewei Zhang
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 2, page 193-217
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHogan, Jeff, et al. "Global higher integrability of jacobians on bounded domains." Annales de l'I.H.P. Analyse non linéaire 17.2 (2000): 193-217. <http://eudml.org/doc/78491>.
@article{Hogan2000,
author = {Hogan, Jeff, Li, Chun, McIntosh, Alan, Zhang, Kewei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Jacobians; Sobolev space; Hardy space; higher integrability; compensated compactness; differential forms},
language = {eng},
number = {2},
pages = {193-217},
publisher = {Gauthier-Villars},
title = {Global higher integrability of jacobians on bounded domains},
url = {http://eudml.org/doc/78491},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Hogan, Jeff
AU - Li, Chun
AU - McIntosh, Alan
AU - Zhang, Kewei
TI - Global higher integrability of jacobians on bounded domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 193
EP - 217
LA - eng
KW - Jacobians; Sobolev space; Hardy space; higher integrability; compensated compactness; differential forms
UR - http://eudml.org/doc/78491
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] Ball J.M., Murat F., W1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
- [3] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, Boston, 1988. Zbl0647.46057MR928802
- [4] Brézis H., Fusco N., Sbordone C., Integrability for the Jacobian of orientation-preserving mappings, J. Funct. Anal.115 (2) (1993) 425-431. Zbl0847.26012MR1234399
- [5] Chang D.-C., Krantz S.G., Stein E.M., Hp Theory on a smooth domain in RN and elliptic boundary problems, J. Funct. Anal.114 (1993) 286-347. Zbl0804.35027MR1223705
- [6] Coifman R., Lions P.-L., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993) 247-286. Zbl0864.42009MR1225511
- [7] Dacorogna B., Weak continuity and weak lower semicontinuity of nonlinear functionals, in: Lect. Notes Math., Vol. 922, Springer, Berlin, 1982. Zbl0484.46041MR658130
- [8] Dacorogna B., Moser J., On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Lineaire7 (1990) 1-26. Zbl0707.35041MR1046081
- [9] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. [10] Greco L., Iwaniec T., Moscariello G., Limits on the improved integrability of the volume forms, Indiana Univ. Math. J.44 (1995) 305-339. [11] Iwaniec T., Integrability theory of the Jacobians, Vorlesungsreihe Rheinische Friedrich-Wilhelms-UniversitätBonn36 (1995). MR463994
- [12] Iwaniec T., Sbordone C., On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal.119 (1992) 129-143. Zbl0766.46016MR1176362
- [13] Jones P., Journé J.L., On weak convergence in H1 (Rd), Proc. Amer. Math. Soc.120 (1994) 137-138. Zbl0814.42011MR1159172
- [14] Lacroix M.-T., Espaces de traces ses espaces de Sobolev-Orlicz, J. de Math. Pures et Appl.53 (1974) 439-458. Zbl0275.46027MR374897
- [15] Montgomery-Smith S., The cotype of operators from C(K), Ph.D. Thesis, Cambridge, 1989. Zbl0701.47006
- [16] Montgomery-Smith S., Comparison of Orlicz-Lorentz spaces, Studia Math.103 (1993) 161-189. Zbl0814.46023MR1199324
- [17] Müller S., Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math.412 (1990) 20-34. Zbl0713.49004MR1078998
- [18] O'Neil R., Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc.115 (1965) 300-328. Zbl0132.09201MR194881
- [19] Robbin J.W., Rogers R.C., Temple B., On weak continuity and the Hodge decomposition, Trans. Amer. Math. Soc.303 (1987) 609-618. Zbl0634.35005MR902788
- [20] Rogers R.C., Temple B., A characterization of the weakly continuous polynomials in the method of compensated compactness, Trans. Amer. Math. Soc.310 (1988) 405-417. Zbl0706.46009MR965761
- [21] Semmes S., A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. Partial Differential Equations19 (1994) 277-319. Zbl0836.35030MR1257006
- [22] Stein E.M., Note on the class L log L, Studia Math.32 (1969) 305-310. Zbl0182.47803MR247534
- [23] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
- [24] Ye D., Prescribingthe Jacobian determinant in Sobolev spaces, Ann. Inst. Henri Poincare (Analyse non lineaire)11 (3) (1994) 275-296. Zbl0834.35047MR1277896
Citations in EuDML Documents
top- Martin Kružík, On convergence of gradient-dependent integrands
- Martin Kružík, Quasiconvexity at the boundary and concentration effects generated by gradients
- Irene Fonseca, Martin Kružík, Oscillations and concentrations generated by -free mappings and weak lower semicontinuity of integral functionals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.