Some spectral properties of the streaming operator with general boundary conditions

Mohamed Boulanouar

Applications of Mathematics (2008)

  • Volume: 53, Issue: 1, page 1-12
  • ISSN: 0862-7940

Abstract

top
This paper deals with the spectral study of the streaming operator with general boundary conditions defined by means of a boundary operator K . We study the positivity and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur d’Advection: existence d’un C 0 -semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–167], in the case K 1 . We also give some spectral properties of the streaming operator and we characterize the type of the generated semigroup in terms of the solution of a characteristic equation.

How to cite

top

Boulanouar, Mohamed. "Some spectral properties of the streaming operator with general boundary conditions." Applications of Mathematics 53.1 (2008): 1-12. <http://eudml.org/doc/33308>.

@article{Boulanouar2008,
abstract = {This paper deals with the spectral study of the streaming operator with general boundary conditions defined by means of a boundary operator $K$. We study the positivity and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–167], in the case $\Vert K\Vert \ge 1$. We also give some spectral properties of the streaming operator and we characterize the type of the generated semigroup in terms of the solution of a characteristic equation.},
author = {Boulanouar, Mohamed},
journal = {Applications of Mathematics},
keywords = {compactness; essential type; positivity and irreducibility; spectral properties; streaming operator; strongly continuous semigroups; compactness; essential type; positivity; irreducibility; spectral properties; streaming operator},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some spectral properties of the streaming operator with general boundary conditions},
url = {http://eudml.org/doc/33308},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Boulanouar, Mohamed
TI - Some spectral properties of the streaming operator with general boundary conditions
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 1
EP - 12
AB - This paper deals with the spectral study of the streaming operator with general boundary conditions defined by means of a boundary operator $K$. We study the positivity and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–167], in the case $\Vert K\Vert \ge 1$. We also give some spectral properties of the streaming operator and we characterize the type of the generated semigroup in terms of the solution of a characteristic equation.
LA - eng
KW - compactness; essential type; positivity and irreducibility; spectral properties; streaming operator; strongly continuous semigroups; compactness; essential type; positivity; irreducibility; spectral properties; streaming operator
UR - http://eudml.org/doc/33308
ER -

References

top
  1. 10.1142/S0218202598000056, Math. Models Methods Appl. Sci. 8 (1998), 95–106. (1998) MR1612007DOI10.1142/S0218202598000056
  2. 10.1016/0022-247X(87)90252-6, J.  Math. Anal. Appl. 121 (1987), 370–405. (1987) MR0872231DOI10.1016/0022-247X(87)90252-6
  3. 10.1080/00411459608220716, Transp. Theory Stat. Phys. 25 (1996), 491–502. (1996) MR1407549DOI10.1080/00411459608220716
  4. 10.1007/PL00005905, Semigroup Forum 55 (1997), 110–117. (1997) MR1446663DOI10.1007/PL00005905
  5. L’opérateur d’Advection: existence d’un C 0 -semi-groupe (I), Transp. Theory Stat. Phys. 31 (2002), 153–167. (2002) MR1904837
  6. One-Parameter Semigroups, North-Holland, Amsterdam-New York, 1987. (1987) MR0915552
  7. Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987. (1987) MR0896904
  8. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Vol. 9: Évolution: numérique, transport, Masson, Paris, 1988. (1988) MR1016606
  9. One-Parameter Semigroups of Positive operators. Lecture Notes in Mathematics 1184, R. Nagel (ed.), Springer, Berlin-New York, 1986. (1986) MR0839450
  10. 10.1007/BF01162028, Math.  Z. 192 (1986), 149–153. (1986) MR0835399DOI10.1007/BF01162028
  11. Spectra of Partial Differential Operators, North-Holland, Amsterdam, 1971. (1971) Zbl0225.35001MR0869254
  12. Equation de transport avec des conditions aux limites de type réflexion, Rapport de recherche, INRIA no. 162, Le Chesnay (France). 
  13. Solutions of the Boltzmann equation. Patterns and waves, Stud. Math. Appl. 18 (1996), 37–96. (1996) MR0882376
  14. Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Universität München, 1981. (1981) 
  15. The stability of positive semigroups on L p -spaces, Proc. Am. Mat. Soc. 123 (1995), 3089–3094. (1995) MR1273529

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.