Some spectral properties of the streaming operator with general boundary conditions
Applications of Mathematics (2008)
- Volume: 53, Issue: 1, page 1-12
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBoulanouar, Mohamed. "Some spectral properties of the streaming operator with general boundary conditions." Applications of Mathematics 53.1 (2008): 1-12. <http://eudml.org/doc/33308>.
@article{Boulanouar2008,
abstract = {This paper deals with the spectral study of the streaming operator with general boundary conditions defined by means of a boundary operator $K$. We study the positivity and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–167], in the case $\Vert K\Vert \ge 1$. We also give some spectral properties of the streaming operator and we characterize the type of the generated semigroup in terms of the solution of a characteristic equation.},
author = {Boulanouar, Mohamed},
journal = {Applications of Mathematics},
keywords = {compactness; essential type; positivity and irreducibility; spectral properties; streaming operator; strongly continuous semigroups; compactness; essential type; positivity; irreducibility; spectral properties; streaming operator},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some spectral properties of the streaming operator with general boundary conditions},
url = {http://eudml.org/doc/33308},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Boulanouar, Mohamed
TI - Some spectral properties of the streaming operator with general boundary conditions
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 1
EP - 12
AB - This paper deals with the spectral study of the streaming operator with general boundary conditions defined by means of a boundary operator $K$. We study the positivity and the irreducibility of the generated semigroup proved in [M. Boulanouar, L’opérateur d’Advection: existence d’un $C_0$-semi-groupe (I), Transp. Theory Stat. Phys. 31, 2002, 153–167], in the case $\Vert K\Vert \ge 1$. We also give some spectral properties of the streaming operator and we characterize the type of the generated semigroup in terms of the solution of a characteristic equation.
LA - eng
KW - compactness; essential type; positivity and irreducibility; spectral properties; streaming operator; strongly continuous semigroups; compactness; essential type; positivity; irreducibility; spectral properties; streaming operator
UR - http://eudml.org/doc/33308
ER -
References
top- 10.1142/S0218202598000056, Math. Models Methods Appl. Sci. 8 (1998), 95–106. (1998) MR1612007DOI10.1142/S0218202598000056
- 10.1016/0022-247X(87)90252-6, J. Math. Anal. Appl. 121 (1987), 370–405. (1987) MR0872231DOI10.1016/0022-247X(87)90252-6
- 10.1080/00411459608220716, Transp. Theory Stat. Phys. 25 (1996), 491–502. (1996) MR1407549DOI10.1080/00411459608220716
- 10.1007/PL00005905, Semigroup Forum 55 (1997), 110–117. (1997) MR1446663DOI10.1007/PL00005905
- L’opérateur d’Advection: existence d’un -semi-groupe (I), Transp. Theory Stat. Phys. 31 (2002), 153–167. (2002) MR1904837
- One-Parameter Semigroups, North-Holland, Amsterdam-New York, 1987. (1987) MR0915552
- Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987. (1987) MR0896904
- Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Vol. 9: Évolution: numérique, transport, Masson, Paris, 1988. (1988) MR1016606
- One-Parameter Semigroups of Positive operators. Lecture Notes in Mathematics 1184, R. Nagel (ed.), Springer, Berlin-New York, 1986. (1986) MR0839450
- 10.1007/BF01162028, Math. Z. 192 (1986), 149–153. (1986) MR0835399DOI10.1007/BF01162028
- Spectra of Partial Differential Operators, North-Holland, Amsterdam, 1971. (1971) Zbl0225.35001MR0869254
- Equation de transport avec des conditions aux limites de type réflexion, Rapport de recherche, INRIA no. 162, Le Chesnay (France).
- Solutions of the Boltzmann equation. Patterns and waves, Stud. Math. Appl. 18 (1996), 37–96. (1996) MR0882376
- Functional analytic treatment of the initial boundary value problem for collisionless gases, Habilitationsschrift, Universität München, 1981. (1981)
- The stability of positive semigroups on -spaces, Proc. Am. Mat. Soc. 123 (1995), 3089–3094. (1995) MR1273529
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.