Central subsets of Urysohn universal spaces
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 3, page 445-461
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNiemiec, Piotr. "Central subsets of Urysohn universal spaces." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 445-461. <http://eudml.org/doc/33327>.
@article{Niemiec2009,
abstract = {A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \rightarrow \mathbb \{R\}$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb \{U\}$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb \{U\}$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized.},
author = {Niemiec, Piotr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; extension; of isometries},
language = {eng},
number = {3},
pages = {445-461},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Central subsets of Urysohn universal spaces},
url = {http://eudml.org/doc/33327},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Niemiec, Piotr
TI - Central subsets of Urysohn universal spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 445
EP - 461
AB - A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \rightarrow \mathbb {R}$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb {U}$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb {U}$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized.
LA - eng
KW - Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; extension; of isometries
UR - http://eudml.org/doc/33327
ER -
References
top- Aronszajn N., Panitchpakdi P., 10.2140/pjm.1956.6.405, Pacific J. Math. 6 (1956), 405--439. Zbl0074.17802MR0084762DOI10.2140/pjm.1956.6.405
- Cameron P.J., Vershik A.M., 10.1016/j.apal.2005.08.001, Ann. Pure Appl. Logic 143 (2006), no. 1--3, 70--78. MR2258622DOI10.1016/j.apal.2005.08.001
- Gao S., Kechris A.S., On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), no. 766, 78 pp. Zbl1012.54038MR1950332
- Hahn H., Reelle Funktionen I, Akademische Verlagsgesellschaft, Leipzig, 1932.
- Holmes M.R., The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math. 140 (1992), 199--223. Zbl0772.54022MR1173763
- Holmes M.R., 10.1016/j.topol.2008.03.013, Topology Appl. 155 (2008), no. 14, 1479--1482. Zbl1149.54007MR2435143DOI10.1016/j.topol.2008.03.013
- Huhunaišvili G.E., On a property of Urysohn's universal metric space, (Russian), Dokl. Akad. Nauk USSR (N.S.) 101 (1955), 332--333. MR0072454
- Isbell J.R., 10.1007/BF02566944, Comment. Math. Helv. 39 (1964), 65--76. Zbl0151.30205MR0182949DOI10.1007/BF02566944
- Kalton N., 10.1007/s11856-007-0099-2, Israel J. Math. 162 (2007), 275--315. MR2365864DOI10.1007/s11856-007-0099-2
- Katětov M., On universal metric spaces, in General Topology and its Relations to Modern Analysis and Algebra, VI (Prague, 1986), Z. Frolík (Ed.), Helderman Verlag, Berlin, 1988, pp. 323--330. MR0952617
- Kirk W., Sims B., Eds., Introduction to hyperconvex spaces, in Handbook of Metric Fixed Point Theory, Chapter 13, Kluwer Academic Publishers, Dordrecht, 2001. MR1904271
- Melleray J., 10.1016/j.topol.2006.05.005, Topology Appl. 154 (2007), 384--403. Zbl1113.54017MR2278687DOI10.1016/j.topol.2006.05.005
- Melleray J., 10.1016/j.topol.2007.04.029, Topology Appl. 155 (2008), no. 14, 1531--1560. MR2435148DOI10.1016/j.topol.2007.04.029
- Pestov V., Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series 40, AMS, Providence, RI, 2006. Zbl1123.37003MR2277969
- Urysohn P.S., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43--64, 74--96.
- Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181--182. Zbl0699.54011MR1056185
- Uspenskij V.V., 10.1016/j.topol.2003.09.008, Topology Appl. 139 (2004), no. 1--3, 145--149. Zbl1062.54036MR2051102DOI10.1016/j.topol.2003.09.008
- Uspenskij V.V., 10.1016/j.topol.2008.03.001, Topology Appl. 155 (2008), 1580--1606. Zbl1166.22002MR2435151DOI10.1016/j.topol.2008.03.001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.