Central subsets of Urysohn universal spaces

Piotr Niemiec

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 3, page 445-461
  • ISSN: 0010-2628

Abstract

top
A subset A of a metric space ( X , d ) is central iff for every Katětov map f : X upper bounded by the diameter of X and any finite subset B of X there is x X such that f ( a ) = d ( x , a ) for each a A B . Central subsets of the Urysohn universal space 𝕌 (see introduction) are studied. It is proved that a metric space X is isometrically embeddable into 𝕌 as a central set iff X has the collinearity property. The Katětov maps of the real line are characterized.

How to cite

top

Niemiec, Piotr. "Central subsets of Urysohn universal spaces." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 445-461. <http://eudml.org/doc/33327>.

@article{Niemiec2009,
abstract = {A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \rightarrow \mathbb \{R\}$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb \{U\}$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb \{U\}$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized.},
author = {Niemiec, Piotr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; extension; of isometries},
language = {eng},
number = {3},
pages = {445-461},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Central subsets of Urysohn universal spaces},
url = {http://eudml.org/doc/33327},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Niemiec, Piotr
TI - Central subsets of Urysohn universal spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 445
EP - 461
AB - A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \rightarrow \mathbb {R}$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb {U}$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb {U}$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized.
LA - eng
KW - Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries; Urysohn's universal space; ultrahomogeneous space; extension; of isometries
UR - http://eudml.org/doc/33327
ER -

References

top
  1. Aronszajn N., Panitchpakdi P., 10.2140/pjm.1956.6.405, Pacific J. Math. 6 (1956), 405--439. Zbl0074.17802MR0084762DOI10.2140/pjm.1956.6.405
  2. Cameron P.J., Vershik A.M., 10.1016/j.apal.2005.08.001, Ann. Pure Appl. Logic 143 (2006), no. 1--3, 70--78. MR2258622DOI10.1016/j.apal.2005.08.001
  3. Gao S., Kechris A.S., On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc. 161 (2003), no. 766, 78 pp. Zbl1012.54038MR1950332
  4. Hahn H., Reelle Funktionen I, Akademische Verlagsgesellschaft, Leipzig, 1932. 
  5. Holmes M.R., The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math. 140 (1992), 199--223. Zbl0772.54022MR1173763
  6. Holmes M.R., 10.1016/j.topol.2008.03.013, Topology Appl. 155 (2008), no. 14, 1479--1482. Zbl1149.54007MR2435143DOI10.1016/j.topol.2008.03.013
  7. Huhunaišvili G.E., On a property of Urysohn's universal metric space, (Russian), Dokl. Akad. Nauk USSR (N.S.) 101 (1955), 332--333. MR0072454
  8. Isbell J.R., 10.1007/BF02566944, Comment. Math. Helv. 39 (1964), 65--76. Zbl0151.30205MR0182949DOI10.1007/BF02566944
  9. Kalton N., 10.1007/s11856-007-0099-2, Israel J. Math. 162 (2007), 275--315. MR2365864DOI10.1007/s11856-007-0099-2
  10. Katětov M., On universal metric spaces, in General Topology and its Relations to Modern Analysis and Algebra, VI (Prague, 1986), Z. Frolík (Ed.), Helderman Verlag, Berlin, 1988, pp. 323--330. MR0952617
  11. Kirk W., Sims B., Eds., Introduction to hyperconvex spaces, in Handbook of Metric Fixed Point Theory, Chapter 13, Kluwer Academic Publishers, Dordrecht, 2001. MR1904271
  12. Melleray J., 10.1016/j.topol.2006.05.005, Topology Appl. 154 (2007), 384--403. Zbl1113.54017MR2278687DOI10.1016/j.topol.2006.05.005
  13. Melleray J., 10.1016/j.topol.2007.04.029, Topology Appl. 155 (2008), no. 14, 1531--1560. MR2435148DOI10.1016/j.topol.2007.04.029
  14. Pestov V., Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series 40, AMS, Providence, RI, 2006. Zbl1123.37003MR2277969
  15. Urysohn P.S., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43--64, 74--96. 
  16. Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181--182. Zbl0699.54011MR1056185
  17. Uspenskij V.V., 10.1016/j.topol.2003.09.008, Topology Appl. 139 (2004), no. 1--3, 145--149. Zbl1062.54036MR2051102DOI10.1016/j.topol.2003.09.008
  18. Uspenskij V.V., 10.1016/j.topol.2008.03.001, Topology Appl. 155 (2008), 1580--1606. Zbl1166.22002MR2435151DOI10.1016/j.topol.2008.03.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.