Robust exponential stability of a class of nonlinear systems

Vojtech Veselý; Danica Rosinová

Kybernetika (1998)

  • Volume: 34, Issue: 5, page [579]-594
  • ISSN: 0023-5954

Abstract

top
The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.

How to cite

top

Veselý, Vojtech, and Rosinová, Danica. "Robust exponential stability of a class of nonlinear systems." Kybernetika 34.5 (1998): [579]-594. <http://eudml.org/doc/33390>.

@article{Veselý1998,
abstract = {The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.},
author = {Veselý, Vojtech, Rosinová, Danica},
journal = {Kybernetika},
keywords = {robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller; robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller},
language = {eng},
number = {5},
pages = {[579]-594},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust exponential stability of a class of nonlinear systems},
url = {http://eudml.org/doc/33390},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Veselý, Vojtech
AU - Rosinová, Danica
TI - Robust exponential stability of a class of nonlinear systems
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 5
SP - [579]
EP - 594
AB - The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered both in a studied system and its input part. The proposed approach does not employ matching conditions.
LA - eng
KW - robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller; robust exponential stability; deterministic uncertainties; nonlinear system; system design; robust controller
UR - http://eudml.org/doc/33390
ER -

References

top
  1. Brogliato B., Neto A. T., 10.1016/0005-1098(94)E0050-R, Automatica 31, (1995), 1, 145–150 (1995) Zbl0825.93650MR1312210DOI10.1016/0005-1098(94)E0050-R
  2. Chua L. Q., Wu C. W., Huang A., Zhong G. Q., A universal circuit for studying and generating chaos, Part 1. IEEE Trans. Circuits and Systems (1993), 10, 732–744 (1993) Zbl0844.58053MR1255706
  3. Corles M., 10.1115/1.2899076, ASME J. Dyn. Syst. Meas. Control 115 (1993), 362–372 (1993) DOI10.1115/1.2899076
  4. Dubrov A. M., Zuber I. E., Design of exponentially stable control systems for a range of nonlinear processes, Automat. Remote Control (1989), 8, 33–40 (1989) MR1019864
  5. Fradkov A. L., Pogromsky A. Yu., Markov A. Yu., Adaptive control of chaotic continuously–time systems, In: Proc. 3rd EC Conference, Roma 1995, pp. 3062–3067 (1995) 
  6. Gaiduk A. R., Analytical controller design for a class of nonlinear systems, Automat. Remote Control (1993), 3, 22–33 (1993) 
  7. Gaiduk A. R., Analytical nonlinear control systems design, In: Proc. 3rd EC Conference, Roma 1995, pp. 1503–1505 (1995) 
  8. Jury E. I., Robustness of discrete systems: A review, In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 184–186 (1990) MR1071016
  9. Konstantopoulos I. K., Antsaklis P. J., New bounds for robust stability of continuous and discrete–time systems under parametric uncertainty, Kybernetika 31 (1995), 6, 623–636 (1995) Zbl0872.93065MR1374150
  10. Kozák Š., 10.1016/0096-3003(94)00119-O, Appl. Math. Comput. 70 (1995), 2–8 (1995) DOI10.1016/0096-3003(94)00119-O
  11. Kučera V., DeSouza C. E., 10.1016/0005-1098(95)00048-2, Automatica 31 (1995), 1357–1359 (1995) MR1349414DOI10.1016/0005-1098(95)00048-2
  12. Leitman G., One method for robust control of uncertain systems: Theory and practice, Kybernetika 32 (1996), 1, 43–62 (1996) MR1380197
  13. Niculescu S. I., DeSouza C. E., Dugard L., Dion J. M., Robust exponential stability of uncertain systems with time–varying delays, In: Proc. 3rd EC Conference, Roma 1995, pp. 1802–1807 (1995) 
  14. Poolla K. S., Shamma J. S., Wise K. A., Linear and nonlinear controller for robust stabilization problem: A survey, In: Proc. 11th IFAC World Congres, Tallin 1990, pp. 176–183 (1990) 
  15. Prokop P., Corriou J. P., 10.1080/002071797224450, Internat. J. Control 66 (1997), 6, 905–921 (1997) Zbl0875.93137MR1686734DOI10.1080/002071797224450
  16. Gong, Zhiming, Wen, Changyun, Mital, Dinesh P., Decentralized robust controller design for a class of interconnected uncertain systems: with known or unknown bound of uncertainty, In: Proc. 3rd EC Conference, Roma 1995, pp. 2940–2945 (1995) MR1391781
  17. Qu, Zhihua, Dorsey J., 10.1080/00207179208934288, Internat J. Control 55 (1992), 1335–1350 (1992) Zbl0751.93019MR1170046DOI10.1080/00207179208934288
  18. Qu, Zhihua, 10.1080/00207179408923134, Internat. J. Control 59 (1994), 1345–1355 (1994) Zbl0806.93044MR1277266DOI10.1080/00207179408923134

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.