On the optimality of a new class of 2D recursive filters
Kybernetika (1999)
- Volume: 35, Issue: 6, page [777]-792
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJetto, Leopoldo. "On the optimality of a new class of 2D recursive filters." Kybernetika 35.6 (1999): [777]-792. <http://eudml.org/doc/33462>.
@article{Jetto1999,
abstract = {The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes.},
author = {Jetto, Leopoldo},
journal = {Kybernetika},
keywords = {minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels; minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels},
language = {eng},
number = {6},
pages = {[777]-792},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the optimality of a new class of 2D recursive filters},
url = {http://eudml.org/doc/33462},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Jetto, Leopoldo
TI - On the optimality of a new class of 2D recursive filters
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 6
SP - [777]
EP - 792
AB - The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes.
LA - eng
KW - minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels; minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels
UR - http://eudml.org/doc/33462
ER -
References
top- Attasi S., Modeling and recursive estimation for double indexed sequences, In: System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic Press, New York 1976 MR0688160
- Azimi–Sadjadi M. A., Bannour S., 10.1109/31.83878, IEEE Trans. Circuits and Systems CAS–38 (1991), 1077–1081 (1991) DOI10.1109/31.83878
- Azimi–Sadjadi M. R., Khorasani K., Reduced order strip Kalman filtering using singular perturbation method, IEEE Trans. Circuits and Systems CAS–37 (1990),284–290 (1990) MR1037361
- Barry P. E., Gran R., Waters C. R., Two–dimensional filtering – a state space approach, In: Proc. of Conference Decision and Control 1976, pp. 613–618 (1976)
- Bedini M. A., Jetto L., 10.1080/00207729108910810, Internat. J. Systems Sci. 22 (1991), 2499–2519 (1991) Zbl0741.93072DOI10.1080/00207729108910810
- Biemond J., Gerbrands J. J., Comparison of some two–dimensional recursive point–to–point estimators based on a DPCM image model, IEEE Trans. Systems Man Cybernet. SMC–10 (1980), 929–936 (1980)
- Santis A. De, Germani A., Jetto L., Space-variant recursive restoration of noisy images, IEEE Trans. Circuits and Systems CAS–41 (1994), 249–261 (1994)
- Germani A., Jetto L., Image modeling and restoration: a new approach, Circuits Syst. Sign. Process. 7 (1988), 427–457 (1988) Zbl0677.68123MR0982124
- Habibi A., Two–dimensional bayesian estimate of images, Proc. IEEE 60 (1972), 878–883 (1972)
- Jain A. K., 10.1007/BF00932298, Part I: Image representation. J. Optim. Theory Appl. 23 (1977), 65–91 (1977) Zbl0341.60022MR1551580DOI10.1007/BF00932298
- Jain A. K., Angel E., 10.1109/T-C.1974.223969, IEEE Trans. Comput. C-23 (1974), 470–476 (1974) DOI10.1109/T-C.1974.223969
- Jain A. K., Jain J. R., 10.1109/TAC.1978.1101881, Part II: Image restoration. IEEE Trans. Automat. Control AC–23 (1978), 817–833 (1978) DOI10.1109/TAC.1978.1101881
- Katayama T., 10.1109/TSMC.1979.4310110, IEEE Trans. Systems Man Cybernet. SMC–9 (1979), 711–717 (1979) Zbl0425.93039DOI10.1109/TSMC.1979.4310110
- Katayama T., 10.1109/TAC.1980.1102547, IEEE Trans. Automat. Control AC–26 (1980), 1199–1201 (1980) DOI10.1109/TAC.1980.1102547
- Katayama T., Kosaka M., 10.1109/TAC.1979.1101956, IEEE Trans. Automat. Control AC–24 (1979), 130–132 (1979) Zbl0393.93048DOI10.1109/TAC.1979.1101956
- Kaufman H., Woods J. W., Dravida S., Tekalp A. M., 10.1109/TAC.1983.1103311, IEEE Trans. Automat. Control AC–28 (1983), 745–756 (1983) Zbl0512.93069DOI10.1109/TAC.1983.1103311
- Keshavan H. R., Srinath M. D., 10.1109/TC.1977.1674732, IEEE Trans. Comput. C–26 (1977), 971–987 (1977) Zbl0372.94005DOI10.1109/TC.1977.1674732
- Keshavan H. R., Srinath M. D., 10.1109/TSMC.1978.4309945, IEEE Trans. Systems Man Cybernet. SMC–8 (1978), 247–259 (1978) MR0479633DOI10.1109/TSMC.1978.4309945
- Liebelt P. B., An Introduction to Optimal Estimation, Addison–Wesley, Reading, MA 1967 Zbl0165.52903
- Murphy M. S., 10.1109/TAC.1980.1102265, IEEE Trans. Automat. Control AC–25 (1980), 336–338 (1980) Zbl0437.93037DOI10.1109/TAC.1980.1102265
- Murphy M. S., Silverman L. M., 10.1109/TAC.1978.1101864, IEEE Trans. Automat. Control AC–23 (1978), 809–816 (1978) DOI10.1109/TAC.1978.1101864
- Nahi N. E., Role of recursive estimation in statistical image enhancement, Proc. IEEE 60 (1972), 872–877 (1972)
- Nahi N. E., Assefi T., Bayesian recursive image estimation, IEEE Trans. Comput. C–21 (1972), 734–738 (1972) Zbl0251.93029
- Nahi N. E., Franco C. A., 10.1109/TCOM.1973.1091662, IEEE Trans. Comm. Com–21 (1973), 305–311 (1973) DOI10.1109/TCOM.1973.1091662
- Panda D. P., Kak A. C., Recursive Filtering of Pictures, Tech. Rep. TR-EE-76, School of Electrical Engineering, Purdue University, Lafayette, Ind., 1976; also in: A. Rosenfield and A. C. Kak: Digital Picture Processing. Chapter 7. Academic Press, New York 1976 (1976)
- Powell S. R., Silverman L. M., 10.1109/TAC.1974.1100483, IEEE Trans. Automat. Control AC–19 (1974), 8–13 (1974) MR0398656DOI10.1109/TAC.1974.1100483
- Strintzis M. G., Comments on ‘Two-dimensional Bayesian estimate of images’, Proc. IEEE 64 (1976), 1255–1257 (1976)
- Suresh B. R., Shenoi B. A., 10.1016/0146-664X(79)90060-1, Computer Graphics and Image Processing 11 (1979), 101–110 (1979) DOI10.1016/0146-664X(79)90060-1
- Suresh B. R., Shenoi B. A., 10.1109/TCS.1981.1084992, IEEE Trans. Circuits and Systems CAS–28 (1981), 307–319 (1981) DOI10.1109/TCS.1981.1084992
- Wellstead P. E., Pinto J. R. Caldas, 10.1080/00207178508933375, Part I: Algorithms. Internat. J. Control 42 (1985), 479–496 (1985) DOI10.1080/00207178508933375
- Wellstead P. E., Pinto J. R. Caldas, 10.1080/00207178508933375, Part II: Smoothing applications. Internat. J. Control 42 (1985), 479–496 (1985) DOI10.1080/00207178508933375
- Woods J. W., Radewan C. H., 10.1109/TIT.1977.1055750, IEEE Trans. Inform. Theory IT–23 (1977), 809–816 (1977) Zbl0361.93053MR0469460DOI10.1109/TIT.1977.1055750
- Yum Y. H., Park S. B., 10.1109/TPAMI.1983.4767396, IEEE Trans. Pattern Anal. Mach. Intell. PAMI–5 (1983), 337–344 (1983) DOI10.1109/TPAMI.1983.4767396
- Zou C. T., Plotkin E. I., Swamy M. N. S., 10.1109/82.329738, IEEE Trans. Circuits and Systems 41 (1994), 678–692 (1994) DOI10.1109/82.329738
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.