On the optimality of a new class of 2D recursive filters

Leopoldo Jetto

Kybernetika (1999)

  • Volume: 35, Issue: 6, page [777]-792
  • ISSN: 0023-5954

Abstract

top
The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes.

How to cite

top

Jetto, Leopoldo. "On the optimality of a new class of 2D recursive filters." Kybernetika 35.6 (1999): [777]-792. <http://eudml.org/doc/33462>.

@article{Jetto1999,
abstract = {The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes.},
author = {Jetto, Leopoldo},
journal = {Kybernetika},
keywords = {minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels; minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels},
language = {eng},
number = {6},
pages = {[777]-792},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the optimality of a new class of 2D recursive filters},
url = {http://eudml.org/doc/33462},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Jetto, Leopoldo
TI - On the optimality of a new class of 2D recursive filters
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 6
SP - [777]
EP - 792
AB - The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes.
LA - eng
KW - minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels; minimum variance property; finite-dimensional filter; Gaussian random field; 2D recursive filters; strip processing; image pixels
UR - http://eudml.org/doc/33462
ER -

References

top
  1. Attasi S., Modeling and recursive estimation for double indexed sequences, In: System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic Press, New York 1976 MR0688160
  2. Azimi–Sadjadi M. A., Bannour S., 10.1109/31.83878, IEEE Trans. Circuits and Systems CAS–38 (1991), 1077–1081 (1991) DOI10.1109/31.83878
  3. Azimi–Sadjadi M. R., Khorasani K., Reduced order strip Kalman filtering using singular perturbation method, IEEE Trans. Circuits and Systems CAS–37 (1990),284–290 (1990) MR1037361
  4. Barry P. E., Gran R., Waters C. R., Two–dimensional filtering – a state space approach, In: Proc. of Conference Decision and Control 1976, pp. 613–618 (1976) 
  5. Bedini M. A., Jetto L., 10.1080/00207729108910810, Internat. J. Systems Sci. 22 (1991), 2499–2519 (1991) Zbl0741.93072DOI10.1080/00207729108910810
  6. Biemond J., Gerbrands J. J., Comparison of some two–dimensional recursive point–to–point estimators based on a DPCM image model, IEEE Trans. Systems Man Cybernet. SMC–10 (1980), 929–936 (1980) 
  7. Santis A. De, Germani A., Jetto L., Space-variant recursive restoration of noisy images, IEEE Trans. Circuits and Systems CAS–41 (1994), 249–261 (1994) 
  8. Germani A., Jetto L., Image modeling and restoration: a new approach, Circuits Syst. Sign. Process. 7 (1988), 427–457 (1988) Zbl0677.68123MR0982124
  9. Habibi A., Two–dimensional bayesian estimate of images, Proc. IEEE 60 (1972), 878–883 (1972) 
  10. Jain A. K., 10.1007/BF00932298, Part I: Image representation. J. Optim. Theory Appl. 23 (1977), 65–91 (1977) Zbl0341.60022MR1551580DOI10.1007/BF00932298
  11. Jain A. K., Angel E., 10.1109/T-C.1974.223969, IEEE Trans. Comput. C-23 (1974), 470–476 (1974) DOI10.1109/T-C.1974.223969
  12. Jain A. K., Jain J. R., 10.1109/TAC.1978.1101881, Part II: Image restoration. IEEE Trans. Automat. Control AC–23 (1978), 817–833 (1978) DOI10.1109/TAC.1978.1101881
  13. Katayama T., 10.1109/TSMC.1979.4310110, IEEE Trans. Systems Man Cybernet. SMC–9 (1979), 711–717 (1979) Zbl0425.93039DOI10.1109/TSMC.1979.4310110
  14. Katayama T., 10.1109/TAC.1980.1102547, IEEE Trans. Automat. Control AC–26 (1980), 1199–1201 (1980) DOI10.1109/TAC.1980.1102547
  15. Katayama T., Kosaka M., 10.1109/TAC.1979.1101956, IEEE Trans. Automat. Control AC–24 (1979), 130–132 (1979) Zbl0393.93048DOI10.1109/TAC.1979.1101956
  16. Kaufman H., Woods J. W., Dravida S., Tekalp A. M., 10.1109/TAC.1983.1103311, IEEE Trans. Automat. Control AC–28 (1983), 745–756 (1983) Zbl0512.93069DOI10.1109/TAC.1983.1103311
  17. Keshavan H. R., Srinath M. D., 10.1109/TC.1977.1674732, IEEE Trans. Comput. C–26 (1977), 971–987 (1977) Zbl0372.94005DOI10.1109/TC.1977.1674732
  18. Keshavan H. R., Srinath M. D., 10.1109/TSMC.1978.4309945, IEEE Trans. Systems Man Cybernet. SMC–8 (1978), 247–259 (1978) MR0479633DOI10.1109/TSMC.1978.4309945
  19. Liebelt P. B., An Introduction to Optimal Estimation, Addison–Wesley, Reading, MA 1967 Zbl0165.52903
  20. Murphy M. S., 10.1109/TAC.1980.1102265, IEEE Trans. Automat. Control AC–25 (1980), 336–338 (1980) Zbl0437.93037DOI10.1109/TAC.1980.1102265
  21. Murphy M. S., Silverman L. M., 10.1109/TAC.1978.1101864, IEEE Trans. Automat. Control AC–23 (1978), 809–816 (1978) DOI10.1109/TAC.1978.1101864
  22. Nahi N. E., Role of recursive estimation in statistical image enhancement, Proc. IEEE 60 (1972), 872–877 (1972) 
  23. Nahi N. E., Assefi T., Bayesian recursive image estimation, IEEE Trans. Comput. C–21 (1972), 734–738 (1972) Zbl0251.93029
  24. Nahi N. E., Franco C. A., 10.1109/TCOM.1973.1091662, IEEE Trans. Comm. Com–21 (1973), 305–311 (1973) DOI10.1109/TCOM.1973.1091662
  25. Panda D. P., Kak A. C., Recursive Filtering of Pictures, Tech. Rep. TR-EE-76, School of Electrical Engineering, Purdue University, Lafayette, Ind., 1976; also in: A. Rosenfield and A. C. Kak: Digital Picture Processing. Chapter 7. Academic Press, New York 1976 (1976) 
  26. Powell S. R., Silverman L. M., 10.1109/TAC.1974.1100483, IEEE Trans. Automat. Control AC–19 (1974), 8–13 (1974) MR0398656DOI10.1109/TAC.1974.1100483
  27. Strintzis M. G., Comments on ‘Two-dimensional Bayesian estimate of images’, Proc. IEEE 64 (1976), 1255–1257 (1976) 
  28. Suresh B. R., Shenoi B. A., 10.1016/0146-664X(79)90060-1, Computer Graphics and Image Processing 11 (1979), 101–110 (1979) DOI10.1016/0146-664X(79)90060-1
  29. Suresh B. R., Shenoi B. A., 10.1109/TCS.1981.1084992, IEEE Trans. Circuits and Systems CAS–28 (1981), 307–319 (1981) DOI10.1109/TCS.1981.1084992
  30. Wellstead P. E., Pinto J. R. Caldas, 10.1080/00207178508933375, Part I: Algorithms. Internat. J. Control 42 (1985), 479–496 (1985) DOI10.1080/00207178508933375
  31. Wellstead P. E., Pinto J. R. Caldas, 10.1080/00207178508933375, Part II: Smoothing applications. Internat. J. Control 42 (1985), 479–496 (1985) DOI10.1080/00207178508933375
  32. Woods J. W., Radewan C. H., 10.1109/TIT.1977.1055750, IEEE Trans. Inform. Theory IT–23 (1977), 809–816 (1977) Zbl0361.93053MR0469460DOI10.1109/TIT.1977.1055750
  33. Yum Y. H., Park S. B., 10.1109/TPAMI.1983.4767396, IEEE Trans. Pattern Anal. Mach. Intell. PAMI–5 (1983), 337–344 (1983) DOI10.1109/TPAMI.1983.4767396
  34. Zou C. T., Plotkin E. I., Swamy M. N. S., 10.1109/82.329738, IEEE Trans. Circuits and Systems 41 (1994), 678–692 (1994) DOI10.1109/82.329738

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.