The algebraic structure of delay-differential systems: a behavioral perspective

Heide Glüsing-Lüerssen; Paolo Vettori; Sandro Zampieri

Kybernetika (2001)

  • Volume: 37, Issue: 4, page [397]-426
  • ISSN: 0023-5954

Abstract

top
This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.

How to cite

top

Glüsing-Lüerssen, Heide, Vettori, Paolo, and Zampieri, Sandro. "The algebraic structure of delay-differential systems: a behavioral perspective." Kybernetika 37.4 (2001): [397]-426. <http://eudml.org/doc/33544>.

@article{Glüsing2001,
abstract = {This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.},
author = {Glüsing-Lüerssen, Heide, Vettori, Paolo, Zampieri, Sandro},
journal = {Kybernetika},
keywords = {delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach; delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach},
language = {eng},
number = {4},
pages = {[397]-426},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The algebraic structure of delay-differential systems: a behavioral perspective},
url = {http://eudml.org/doc/33544},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Glüsing-Lüerssen, Heide
AU - Vettori, Paolo
AU - Zampieri, Sandro
TI - The algebraic structure of delay-differential systems: a behavioral perspective
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 4
SP - [397]
EP - 426
AB - This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.
LA - eng
KW - delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach; delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach
UR - http://eudml.org/doc/33544
ER -

References

top
  1. Becker T., Weispfennig V., Gröbner Bases: A Computational Approach to Commutative Algebra, Springer, New York 1993 MR1213453
  2. Berenstein C. A., Dostal M. A., 10.1007/BF02384763, Ark. Mat. 12 (1974), 267–280 (1974) Zbl0293.33001MR0377111DOI10.1007/BF02384763
  3. Berenstein C. A., Struppa D. C., Complex analysis and convolution equations, Several complex variables. Encyclopedia Math. Sci. 54 (1993), 1–108 (1993) 
  4. Berenstein C. A., Yger A., 10.1016/0001-8708(86)90002-2, Adv. in Math. 60 (1986), 1–80 (1986) Zbl0586.32019MR0839482DOI10.1016/0001-8708(86)90002-2
  5. Brezis H., Analyse fonctionnelle: theorie et applications, Masson, Paris 1983 Zbl1147.46300MR0697382
  6. Cohen A. M., Cuypers, H., (eds.) H. Sterk, Some Tapas of Computer Algebra, Springer, Berlin 1999 Zbl0924.13021MR1679917
  7. Cohn P. M., Free Rings and Their Relations, Academic Press, London 1985. Second edition (1985) Zbl0659.16001MR0800091
  8. Diab A., Sur les zéros communs des polynômes exponentiels, C. R. Acad. Sci. Paris Sér. A 281 (1975), 757–758 (1975) Zbl0323.30003MR0390186
  9. Ehrenpreis L., Solutions of some problems of division, Part III. Division in the spaces . Amer. J. Math. 78 (1956), 685–715 (1956) Zbl0072.32801MR0083690
  10. Folland G. B., Fourier Analysis and its Applications, Wadsworth & Brooks, Pacific Grove 1992 Zbl1222.42001MR1145236
  11. Gluesing–Luerssen H., 10.1007/PL00009859, Math. Control Signal Systems 13 (2000), 22–40 Zbl0954.93007MR1742138DOI10.1007/PL00009859
  12. Gluesing–Luerssen H., 10.1137/S0363012995281869, SIAM J. Control Optim. 35 (1997), 480–499 (1997) MR1436634DOI10.1137/S0363012995281869
  13. Gluesing–Luerssen H., Linear delay-differential systems with commensurate delays: An algebraic approach, Habilitationsschrift at the University of Oldenburg 2000. Accepted for publication as Lecture Notes in Mathematics, Springer Zbl0989.34001MR1874340
  14. Habets L. C. G. J. M., 10.1007/PL00009851, Math. Control Signal Systems 12 (1999), 219–244 (1999) Zbl0951.93015MR1707899DOI10.1007/PL00009851
  15. Habets L. C. G. J. M., Eijndhoven S. J. L., Behavioral controllability of time-delay systems with incommensurate delays, In: Proc. IFAC Workshop on Linear Time Delay Systems (A. M. Perdon, ed.), Ancona 2000, pp. 195–201 
  16. Helmer O., 10.1090/S0002-9904-1943-07886-X, Bull. Amer. Math. Soc. 49 (1943), 225–236 (1943) Zbl0060.07606MR0007744DOI10.1090/S0002-9904-1943-07886-X
  17. Jacobson N., Basic Algebra I, Second edition. W. H. Freeman, New York 1985 Zbl0557.16001MR0780184
  18. Kamen E. W., 10.1007/BF01698126, Math. Systems Theory 9 (1975), 57–74 (1975) Zbl0318.93003MR0395953DOI10.1007/BF01698126
  19. Kamen E. W., Khargonekar P. P., Tannenbaum A., 10.1080/00207178608933506, Internat. J. Control 43 (1986), 837–857 (1986) Zbl0599.93047MR0828360DOI10.1080/00207178608933506
  20. Kaplansky I., 10.1090/S0002-9947-1949-0031470-3, Trans. Amer. Math. Soc. 66 (1949), 464–491 (1949) Zbl0036.01903MR0031470DOI10.1090/S0002-9947-1949-0031470-3
  21. Kelley J. L., Namioka I., Topological Vector Spaces, Van Nostrand, 1963 MR0166578
  22. Lang S., Algebra, Second edition. Addison–Wesley, Reading, N.J. 1984 Zbl1063.00002MR0783636
  23. Lezama O., Vasquez O., 10.1023/A:1006537212456, Acta Math. Hungar. 80 (1998), 169–176 (1998) MR1624566DOI10.1023/A:1006537212456
  24. Malgrange B., 10.5802/aif.65, Ann. Inst. Fourier 6 (1955/1956), 271–355 (1955) MR0086990DOI10.5802/aif.65
  25. Meisters G. H., 10.1016/0022-1236(77)90016-7, J. Funct. Anal. 26 (1977), 68–88 (1977) Zbl0359.46027MR0448068DOI10.1016/0022-1236(77)90016-7
  26. Mounier H., 10.1515/form.10.1.39, Forum Math. 10 (1998), 39–58 (1998) Zbl0891.93014MR1490137DOI10.1515/form.10.1.39
  27. Niven I., Irrational Numbers, Wiley, New York 1956 Zbl0146.27703MR0080123
  28. Oberst U., 10.1007/BF00046908, Acta Appl. Math. 20 (1990), 1–175 (1990) Zbl0715.93014MR1078671DOI10.1007/BF00046908
  29. Olbrot A. W., Pandolfi L., 10.1080/00207178808906006, Internat. J. Control 47 (1988), 193–208 (1988) Zbl0662.93008MR0929735DOI10.1080/00207178808906006
  30. Parreau F., Weit Y., Schwartz’s theorem on mean periodic vector-valued functions, Bull. Soc. Math. France 117 (1989), 3, 319–325 (1989) Zbl0704.46011MR1020109
  31. Polderman J. W., Willems J. C., Introduction to Mathematical Systems Theory, A behavioral approach. Springer, Boston 1998 Zbl0940.93002MR1480665
  32. Rocha P., Wood J., 10.1137/S0363012999362797, SIAM J. Control Optim. 40 (2001), 107–134 MR1855308DOI10.1137/S0363012999362797
  33. Schwartz L., 10.2307/1969386, Ann. of Math. (2) 48 (1947), 857–929 (1947) DOI10.2307/1969386
  34. Treves F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York 1967 Zbl1111.46001MR0225131
  35. Eijndhoven S. J. L. van, Habets L. C. G. J. M., Equivalence of Convolution Systems in a Behavioral Framework, Report RANA 99-25. Eindhoven University of Technology 1999 
  36. Poorten A. J. van der, Tijdeman R., On common zeros of exponential polynomials, Enseign. Math. (2) 21 (1975), 57–67 (1975) MR0379387
  37. Vettori P., Delay Differential Systems in the Behavioral Approach, Ph. D. Thesis, Università di Padova 1999 
  38. Vettori P., Zampieri S., 10.1137/S0363012999359718, SIAM J. Control Optim. 39 (2000), 728–756 Zbl0976.34070MR1786327DOI10.1137/S0363012999359718
  39. Vettori P., Zampieri S., 10.1109/9.920803, IEEE Trans. Automat Control. AC–46 (2001), 793–797 Zbl1009.93013MR1833038DOI10.1109/9.920803
  40. Willems J. C., 10.1109/9.557576, IEEE Trans. Automat. Control AC-42 (1997), 326–339 (1997) MR1435822DOI10.1109/9.557576
  41. Zemanian A. H., Distribution Theory and Transform Analysis, McGraw–Hill, New York 1965 Zbl0643.46028MR0177293

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.