The algebraic structure of delay-differential systems: a behavioral perspective
Heide Glüsing-Lüerssen; Paolo Vettori; Sandro Zampieri
Kybernetika (2001)
- Volume: 37, Issue: 4, page [397]-426
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGlüsing-Lüerssen, Heide, Vettori, Paolo, and Zampieri, Sandro. "The algebraic structure of delay-differential systems: a behavioral perspective." Kybernetika 37.4 (2001): [397]-426. <http://eudml.org/doc/33544>.
@article{Glüsing2001,
abstract = {This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.},
author = {Glüsing-Lüerssen, Heide, Vettori, Paolo, Zampieri, Sandro},
journal = {Kybernetika},
keywords = {delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach; delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach},
language = {eng},
number = {4},
pages = {[397]-426},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The algebraic structure of delay-differential systems: a behavioral perspective},
url = {http://eudml.org/doc/33544},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Glüsing-Lüerssen, Heide
AU - Vettori, Paolo
AU - Zampieri, Sandro
TI - The algebraic structure of delay-differential systems: a behavioral perspective
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 4
SP - [397]
EP - 426
AB - This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.
LA - eng
KW - delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach; delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach
UR - http://eudml.org/doc/33544
ER -
References
top- Becker T., Weispfennig V., Gröbner Bases: A Computational Approach to Commutative Algebra, Springer, New York 1993 MR1213453
- Berenstein C. A., Dostal M. A., 10.1007/BF02384763, Ark. Mat. 12 (1974), 267–280 (1974) Zbl0293.33001MR0377111DOI10.1007/BF02384763
- Berenstein C. A., Struppa D. C., Complex analysis and convolution equations, Several complex variables. Encyclopedia Math. Sci. 54 (1993), 1–108 (1993)
- Berenstein C. A., Yger A., 10.1016/0001-8708(86)90002-2, Adv. in Math. 60 (1986), 1–80 (1986) Zbl0586.32019MR0839482DOI10.1016/0001-8708(86)90002-2
- Brezis H., Analyse fonctionnelle: theorie et applications, Masson, Paris 1983 Zbl1147.46300MR0697382
- Cohen A. M., Cuypers, H., (eds.) H. Sterk, Some Tapas of Computer Algebra, Springer, Berlin 1999 Zbl0924.13021MR1679917
- Cohn P. M., Free Rings and Their Relations, Academic Press, London 1985. Second edition (1985) Zbl0659.16001MR0800091
- Diab A., Sur les zéros communs des polynômes exponentiels, C. R. Acad. Sci. Paris Sér. A 281 (1975), 757–758 (1975) Zbl0323.30003MR0390186
- Ehrenpreis L., Solutions of some problems of division, Part III. Division in the spaces . Amer. J. Math. 78 (1956), 685–715 (1956) Zbl0072.32801MR0083690
- Folland G. B., Fourier Analysis and its Applications, Wadsworth & Brooks, Pacific Grove 1992 Zbl1222.42001MR1145236
- Gluesing–Luerssen H., 10.1007/PL00009859, Math. Control Signal Systems 13 (2000), 22–40 Zbl0954.93007MR1742138DOI10.1007/PL00009859
- Gluesing–Luerssen H., 10.1137/S0363012995281869, SIAM J. Control Optim. 35 (1997), 480–499 (1997) MR1436634DOI10.1137/S0363012995281869
- Gluesing–Luerssen H., Linear delay-differential systems with commensurate delays: An algebraic approach, Habilitationsschrift at the University of Oldenburg 2000. Accepted for publication as Lecture Notes in Mathematics, Springer Zbl0989.34001MR1874340
- Habets L. C. G. J. M., 10.1007/PL00009851, Math. Control Signal Systems 12 (1999), 219–244 (1999) Zbl0951.93015MR1707899DOI10.1007/PL00009851
- Habets L. C. G. J. M., Eijndhoven S. J. L., Behavioral controllability of time-delay systems with incommensurate delays, In: Proc. IFAC Workshop on Linear Time Delay Systems (A. M. Perdon, ed.), Ancona 2000, pp. 195–201
- Helmer O., 10.1090/S0002-9904-1943-07886-X, Bull. Amer. Math. Soc. 49 (1943), 225–236 (1943) Zbl0060.07606MR0007744DOI10.1090/S0002-9904-1943-07886-X
- Jacobson N., Basic Algebra I, Second edition. W. H. Freeman, New York 1985 Zbl0557.16001MR0780184
- Kamen E. W., 10.1007/BF01698126, Math. Systems Theory 9 (1975), 57–74 (1975) Zbl0318.93003MR0395953DOI10.1007/BF01698126
- Kamen E. W., Khargonekar P. P., Tannenbaum A., 10.1080/00207178608933506, Internat. J. Control 43 (1986), 837–857 (1986) Zbl0599.93047MR0828360DOI10.1080/00207178608933506
- Kaplansky I., 10.1090/S0002-9947-1949-0031470-3, Trans. Amer. Math. Soc. 66 (1949), 464–491 (1949) Zbl0036.01903MR0031470DOI10.1090/S0002-9947-1949-0031470-3
- Kelley J. L., Namioka I., Topological Vector Spaces, Van Nostrand, 1963 MR0166578
- Lang S., Algebra, Second edition. Addison–Wesley, Reading, N.J. 1984 Zbl1063.00002MR0783636
- Lezama O., Vasquez O., 10.1023/A:1006537212456, Acta Math. Hungar. 80 (1998), 169–176 (1998) MR1624566DOI10.1023/A:1006537212456
- Malgrange B., 10.5802/aif.65, Ann. Inst. Fourier 6 (1955/1956), 271–355 (1955) MR0086990DOI10.5802/aif.65
- Meisters G. H., 10.1016/0022-1236(77)90016-7, J. Funct. Anal. 26 (1977), 68–88 (1977) Zbl0359.46027MR0448068DOI10.1016/0022-1236(77)90016-7
- Mounier H., 10.1515/form.10.1.39, Forum Math. 10 (1998), 39–58 (1998) Zbl0891.93014MR1490137DOI10.1515/form.10.1.39
- Niven I., Irrational Numbers, Wiley, New York 1956 Zbl0146.27703MR0080123
- Oberst U., 10.1007/BF00046908, Acta Appl. Math. 20 (1990), 1–175 (1990) Zbl0715.93014MR1078671DOI10.1007/BF00046908
- Olbrot A. W., Pandolfi L., 10.1080/00207178808906006, Internat. J. Control 47 (1988), 193–208 (1988) Zbl0662.93008MR0929735DOI10.1080/00207178808906006
- Parreau F., Weit Y., Schwartz’s theorem on mean periodic vector-valued functions, Bull. Soc. Math. France 117 (1989), 3, 319–325 (1989) Zbl0704.46011MR1020109
- Polderman J. W., Willems J. C., Introduction to Mathematical Systems Theory, A behavioral approach. Springer, Boston 1998 Zbl0940.93002MR1480665
- Rocha P., Wood J., 10.1137/S0363012999362797, SIAM J. Control Optim. 40 (2001), 107–134 MR1855308DOI10.1137/S0363012999362797
- Schwartz L., 10.2307/1969386, Ann. of Math. (2) 48 (1947), 857–929 (1947) DOI10.2307/1969386
- Treves F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York 1967 Zbl1111.46001MR0225131
- Eijndhoven S. J. L. van, Habets L. C. G. J. M., Equivalence of Convolution Systems in a Behavioral Framework, Report RANA 99-25. Eindhoven University of Technology 1999
- Poorten A. J. van der, Tijdeman R., On common zeros of exponential polynomials, Enseign. Math. (2) 21 (1975), 57–67 (1975) MR0379387
- Vettori P., Delay Differential Systems in the Behavioral Approach, Ph. D. Thesis, Università di Padova 1999
- Vettori P., Zampieri S., 10.1137/S0363012999359718, SIAM J. Control Optim. 39 (2000), 728–756 Zbl0976.34070MR1786327DOI10.1137/S0363012999359718
- Vettori P., Zampieri S., 10.1109/9.920803, IEEE Trans. Automat Control. AC–46 (2001), 793–797 Zbl1009.93013MR1833038DOI10.1109/9.920803
- Willems J. C., 10.1109/9.557576, IEEE Trans. Automat. Control AC-42 (1997), 326–339 (1997) MR1435822DOI10.1109/9.557576
- Zemanian A. H., Distribution Theory and Transform Analysis, McGraw–Hill, New York 1965 Zbl0643.46028MR0177293
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.