Receding-horizon control of constrained uncertain linear systems with disturbances
Luigi Chisci; Paola Falugi; Giovanni Zappa
Kybernetika (2002)
- Volume: 38, Issue: 2, page [169]-185
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topChisci, Luigi, Falugi, Paola, and Zappa, Giovanni. "Receding-horizon control of constrained uncertain linear systems with disturbances." Kybernetika 38.2 (2002): [169]-185. <http://eudml.org/doc/33573>.
@article{Chisci2002,
abstract = {The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest invariant region are investigated.},
author = {Chisci, Luigi, Falugi, Paola, Zappa, Giovanni},
journal = {Kybernetika},
keywords = {constrained linear system; disturbances; discrete-time control system; constrained linear system; disturbances; discrete-time control system},
language = {eng},
number = {2},
pages = {[169]-185},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Receding-horizon control of constrained uncertain linear systems with disturbances},
url = {http://eudml.org/doc/33573},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Chisci, Luigi
AU - Falugi, Paola
AU - Zappa, Giovanni
TI - Receding-horizon control of constrained uncertain linear systems with disturbances
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 2
SP - [169]
EP - 185
AB - The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest invariant region are investigated.
LA - eng
KW - constrained linear system; disturbances; discrete-time control system; constrained linear system; disturbances; discrete-time control system
UR - http://eudml.org/doc/33573
ER -
References
top- Badgwell T. A., 10.1080/002071797223343, Internat. J. Control 68 (1997), 797–818 (1997) Zbl0889.93025MR1689731DOI10.1080/002071797223343
- Barmisch R. R., 10.1007/BF00939145, J. Optim. Theory Appl. 46 (1985), 399–408 (1985) MR0797844DOI10.1007/BF00939145
- Bemporad A., Morari M., Robust model predictive control: a survey, In: Robustness in Identification and Control (A. Garulli, A. Tesi and A. Vicino, eds., Lecture Notes in Control and Information Sciences 245), Springer–Verlag, Berlin 1999, pp. 207–226 (1999) Zbl0979.93518MR1705197
- Blanchini F., 10.1109/9.272351, IEEE Trans. Automat. Control 39 (1994), 428–433 (1994) MR1265438DOI10.1109/9.272351
- Blanchini F., 10.1016/S0005-1098(99)00113-2, Automatica 35 (1999), 1747–1768 (1999) Zbl0935.93005MR1831764DOI10.1016/S0005-1098(99)00113-2
- Casavola A., Giannelli, M., Mosca E., 10.1016/S0005-1098(99)00112-0, Automatica 36 (2000), 125–133 Zbl0939.93506MR1833680DOI10.1016/S0005-1098(99)00112-0
- Chisci L., Zappa G., Robustifying a predictive controller against persistent disturbances, In: Proc. European Control Conference’99 (CD ROM), Karlsruhe 1999
- Geromel J. C., Peres P. L. D., Bernussou J., 10.1137/0329021, SIAM J. Control Optim. 29 (1991), 381–402 (1991) Zbl0741.93020MR1092734DOI10.1137/0329021
- Gilbert E. G., Tan K. Tin, 10.1109/9.83532, IEEE Trans. Automat. Control 36 (1991), 1008–1021 (1991) MR1122477DOI10.1109/9.83532
- Gurvits L., 10.1016/0024-3795(95)90006-3, Linear Algebra Appl. 231 (1995), 47–85 (1995) Zbl0845.68067MR1361100DOI10.1016/0024-3795(95)90006-3
- Keerthi S. S., Gilbert E. G., 10.1109/TAC.1987.1104625, IEEE Trans. Automat. Control 32 (1987), 432–435 (1987) Zbl0611.93023DOI10.1109/TAC.1987.1104625
- Keerthi S. S., Gilbert E. G., 10.1007/BF00938540, J. Optim. Theory Appl. 57 (1988), 265–293 (1988) Zbl0622.93044MR0938875DOI10.1007/BF00938540
- Kolmanovsky I., Gilbert E. G., Maximal output admissible sets for discrete-time systems with disturbance inputs, In: Proc. 1995 Amer. Control Conference, Seattle 1995, pp. 1995–1999 (1995)
- Kothare M. V., Balakrishnan, V., Morari M., 10.1016/0005-1098(96)00063-5, Automatica 32 (1996), 1361–1379 (1996) Zbl0897.93023MR1420038DOI10.1016/0005-1098(96)00063-5
- Kouvaritakis B., Rossiter J. A., Schuurmans J., 10.1109/9.871769, IEEE Trans. Automat. Control 4 (2000), 1545–1549 Zbl0988.93022MR1797413DOI10.1109/9.871769
- Lee J. H., Yu Z., 10.1016/S0005-1098(96)00255-5, Automatica 33 (1997), 763–781 (1997) Zbl0878.93025MR1451899DOI10.1016/S0005-1098(96)00255-5
- Rao C., Rawlings J. B., Wright S., 10.1023/A:1021711402723, J. Optim. Theory Appl. 99 (1998), 723–757 (1998) Zbl0973.90092MR1657971DOI10.1023/A:1021711402723
- Rossiter J. A., Kouvaritakis, B., Rice M. J., 10.1016/S0005-1098(97)00171-4, Automatica 34 (1998), 65–73 (1998) Zbl0913.93022MR1614093DOI10.1016/S0005-1098(97)00171-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.