States on unital partially-ordered groups

Anatolij Dvurečenskij

Kybernetika (2002)

  • Volume: 38, Issue: 3, page [297]-318
  • ISSN: 0023-5954

Abstract

top
We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital -group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups.

How to cite

top

Dvurečenskij, Anatolij. "States on unital partially-ordered groups." Kybernetika 38.3 (2002): [297]-318. <http://eudml.org/doc/33584>.

@article{Dvurečenskij2002,
abstract = {We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital $\ell $-group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups.},
author = {Dvurečenskij, Anatolij},
journal = {Kybernetika},
keywords = {non-commutative group; partially ordered groups; non-commutative group; partially ordered groups},
language = {eng},
number = {3},
pages = {[297]-318},
publisher = {Institute of Information Theory and Automation AS CR},
title = {States on unital partially-ordered groups},
url = {http://eudml.org/doc/33584},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Dvurečenskij, Anatolij
TI - States on unital partially-ordered groups
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 3
SP - [297]
EP - 318
AB - We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital $\ell $-group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups.
LA - eng
KW - non-commutative group; partially ordered groups; non-commutative group; partially ordered groups
UR - http://eudml.org/doc/33584
ER -

References

top
  1. Bigard A., Keimel K., Wolfenstein S., Groupes et Anneax Réticulés, Springer–Verlag, Berlin – Heidelberg – New York 1981 
  2. Birkhoff G., Lattice theory, Amer. Math. Soc. Colloq. Publ. 25 (1967) (1967) Zbl0153.02501MR0227053
  3. Chovanec F., States and observables on MV-algebras, Tatra Mountains Math. Publ. 3 (1993), 55–65 (1993) Zbl0799.03074MR1278519
  4. Nola A. Di, Georgescu G., Iorgulescu A., Pseudo-BL-algebras, I, II, Multi. Val. Logic, to appear 
  5. Dvurečenskij A., 10.1017/S1446788700036806, J. Austral. Math. Soc. 72 (2002), to appear Zbl1027.06014MR1902211DOI10.1017/S1446788700036806
  6. Dvurečenskij A., 10.1023/A:1012490620450, Studia Logica 68 (2001), 301–327 Zbl1081.06010MR1865858DOI10.1023/A:1012490620450
  7. Dvurečenskij A., States and idempotents of pseudo MV-algebras, Tatra Mountains. Math. Publ. 22 (2001), 79–89 Zbl0997.03050MR1889036
  8. Dvurečenskij A., Kalmbach G., States on pseudo MV-algebras and the hull-kernel topology, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146 Zbl1096.06009MR1910782
  9. Dvurečenskij A., Vetterlein T., 10.1023/A:1004192715509, I. Basic properties. Internat. J. Theoret. Phys. 40 (2001), 685–701 Zbl1092.03034MR1831592DOI10.1023/A:1004192715509
  10. Dvurečenskij A., Vetterlein T., 10.1023/A:1004144832348, II. Group representations. Interat. J. Theoret. Phys. 40 (2001), 703–726 Zbl1092.03034MR1831593DOI10.1023/A:1004144832348
  11. Dvurečenskij A., Vetterlein T., 10.1023/A:1015561420306, Found. Phys. Lett. 14 (2001), 425–446 MR1857794DOI10.1023/A:1015561420306
  12. Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford – London – New York – Paris 1963 Zbl0137.02001MR0171864
  13. Georgescu G., Bosbach states on pseudo-BL algebras, Soft Computing, to appear 
  14. Georgescu G., Iorgulescu A., Pseudo-MV algebras, Multi Valued Logic 6 (2001), 95–135 Zbl1014.06008MR1817439
  15. Goodearl K. R., Partially Ordered Abelian Groups with Interpolation, (Math. Surveys Monographs 20), Amer. Math. Soc., Providence, Rhode Island 1986 Zbl0589.06008MR0845783
  16. Mundici D., 10.1007/BF01053035, Studia Logica 55 (1995), 113–127 (1995) Zbl0836.03016MR1348840DOI10.1007/BF01053035
  17. Rachůnek J., 10.1023/A:1021766309509, Czechoslovak Math. J. 52 (2002), 255–273 Zbl1012.06012DOI10.1023/A:1021766309509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.