States on unital partially-ordered groups
Kybernetika (2002)
- Volume: 38, Issue: 3, page [297]-318
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDvurečenskij, Anatolij. "States on unital partially-ordered groups." Kybernetika 38.3 (2002): [297]-318. <http://eudml.org/doc/33584>.
@article{Dvurečenskij2002,
abstract = {We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital $\ell $-group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups.},
author = {Dvurečenskij, Anatolij},
journal = {Kybernetika},
keywords = {non-commutative group; partially ordered groups; non-commutative group; partially ordered groups},
language = {eng},
number = {3},
pages = {[297]-318},
publisher = {Institute of Information Theory and Automation AS CR},
title = {States on unital partially-ordered groups},
url = {http://eudml.org/doc/33584},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Dvurečenskij, Anatolij
TI - States on unital partially-ordered groups
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 3
SP - [297]
EP - 318
AB - We study states on unital po-groups which are not necessarily commutative as normalized positive real-valued group homomorphisms. We show that in contrast to the commutative case, there are examples of unital po-groups having no state. We introduce the state interpolation property holding in any Abelian unital po-group, and we show that it holds in any normal-valued unital $\ell $-group. We present a connection among states and ideals of po-groups, and we describe extremal states on the state space of unital po-groups.
LA - eng
KW - non-commutative group; partially ordered groups; non-commutative group; partially ordered groups
UR - http://eudml.org/doc/33584
ER -
References
top- Bigard A., Keimel K., Wolfenstein S., Groupes et Anneax Réticulés, Springer–Verlag, Berlin – Heidelberg – New York 1981
- Birkhoff G., Lattice theory, Amer. Math. Soc. Colloq. Publ. 25 (1967) (1967) Zbl0153.02501MR0227053
- Chovanec F., States and observables on MV-algebras, Tatra Mountains Math. Publ. 3 (1993), 55–65 (1993) Zbl0799.03074MR1278519
- Nola A. Di, Georgescu G., Iorgulescu A., Pseudo-BL-algebras, I, II, Multi. Val. Logic, to appear
- Dvurečenskij A., 10.1017/S1446788700036806, J. Austral. Math. Soc. 72 (2002), to appear Zbl1027.06014MR1902211DOI10.1017/S1446788700036806
- Dvurečenskij A., 10.1023/A:1012490620450, Studia Logica 68 (2001), 301–327 Zbl1081.06010MR1865858DOI10.1023/A:1012490620450
- Dvurečenskij A., States and idempotents of pseudo MV-algebras, Tatra Mountains. Math. Publ. 22 (2001), 79–89 Zbl0997.03050MR1889036
- Dvurečenskij A., Kalmbach G., States on pseudo MV-algebras and the hull-kernel topology, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146 Zbl1096.06009MR1910782
- Dvurečenskij A., Vetterlein T., 10.1023/A:1004192715509, I. Basic properties. Internat. J. Theoret. Phys. 40 (2001), 685–701 Zbl1092.03034MR1831592DOI10.1023/A:1004192715509
- Dvurečenskij A., Vetterlein T., 10.1023/A:1004144832348, II. Group representations. Interat. J. Theoret. Phys. 40 (2001), 703–726 Zbl1092.03034MR1831593DOI10.1023/A:1004144832348
- Dvurečenskij A., Vetterlein T., 10.1023/A:1015561420306, Found. Phys. Lett. 14 (2001), 425–446 MR1857794DOI10.1023/A:1015561420306
- Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford – London – New York – Paris 1963 Zbl0137.02001MR0171864
- Georgescu G., Bosbach states on pseudo-BL algebras, Soft Computing, to appear
- Georgescu G., Iorgulescu A., Pseudo-MV algebras, Multi Valued Logic 6 (2001), 95–135 Zbl1014.06008MR1817439
- Goodearl K. R., Partially Ordered Abelian Groups with Interpolation, (Math. Surveys Monographs 20), Amer. Math. Soc., Providence, Rhode Island 1986 Zbl0589.06008MR0845783
- Mundici D., 10.1007/BF01053035, Studia Logica 55 (1995), 113–127 (1995) Zbl0836.03016MR1348840DOI10.1007/BF01053035
- Rachůnek J., 10.1023/A:1021766309509, Czechoslovak Math. J. 52 (2002), 255–273 Zbl1012.06012DOI10.1023/A:1021766309509
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.