H 2 optimal decoupling of previewed signals in the discrete-time case

Giovanni Marro; Domenico Prattichizzo; Elena Zattoni

Kybernetika (2002)

  • Volume: 38, Issue: 4, page [479]-492
  • ISSN: 0023-5954

Abstract

top
The synthesis of a feedforward unit for H 2 optimal decoupling of measurable or previewed signals in discrete-time linear time-invariant systems is considered. It is shown that an H 2 optimal compensator can be achieved by connecting a finite impulse response (FIR) system and a stable dynamic unit. To derive the FIR system convolution profiles an easily implementable computational scheme based on pseudoinversion (possibly nested to avoid computational constraints) is proposed, while the dynamic unit is derived by solving a standard LQR problem, in general cheap or singular.

How to cite

top

Marro, Giovanni, Prattichizzo, Domenico, and Zattoni, Elena. "$H_2$ optimal decoupling of previewed signals in the discrete-time case." Kybernetika 38.4 (2002): [479]-492. <http://eudml.org/doc/33597>.

@article{Marro2002,
abstract = {The synthesis of a feedforward unit for $H_2$ optimal decoupling of measurable or previewed signals in discrete-time linear time-invariant systems is considered. It is shown that an $H_2$ optimal compensator can be achieved by connecting a finite impulse response (FIR) system and a stable dynamic unit. To derive the FIR system convolution profiles an easily implementable computational scheme based on pseudoinversion (possibly nested to avoid computational constraints) is proposed, while the dynamic unit is derived by solving a standard LQR problem, in general cheap or singular.},
author = {Marro, Giovanni, Prattichizzo, Domenico, Zattoni, Elena},
journal = {Kybernetika},
keywords = {optimal decoupling of signal; discrete-time system; optimal decoupling of signal; discrete-time system},
language = {eng},
number = {4},
pages = {[479]-492},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$H_2$ optimal decoupling of previewed signals in the discrete-time case},
url = {http://eudml.org/doc/33597},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Marro, Giovanni
AU - Prattichizzo, Domenico
AU - Zattoni, Elena
TI - $H_2$ optimal decoupling of previewed signals in the discrete-time case
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 4
SP - [479]
EP - 492
AB - The synthesis of a feedforward unit for $H_2$ optimal decoupling of measurable or previewed signals in discrete-time linear time-invariant systems is considered. It is shown that an $H_2$ optimal compensator can be achieved by connecting a finite impulse response (FIR) system and a stable dynamic unit. To derive the FIR system convolution profiles an easily implementable computational scheme based on pseudoinversion (possibly nested to avoid computational constraints) is proposed, while the dynamic unit is derived by solving a standard LQR problem, in general cheap or singular.
LA - eng
KW - optimal decoupling of signal; discrete-time system; optimal decoupling of signal; discrete-time system
UR - http://eudml.org/doc/33597
ER -

References

top
  1. Barbagli F., Marro, G., Prattichizzo D., Solving signal decoupling problems through self-bounded controlled invariants, In: Proc. 39th IEEE Conference on Decision and Control (CDC 2000), Sydney 2000 
  2. Basile G., Marro G., L’invarianza rispetto ai disturbi studiata nello spazio degli stati, In: Rendiconti della LXX Riunione Annuale AEI, paper no. 1-4-01, Rimini 1969 
  3. Basile G., Marro G., 10.1007/BF00931370, J. Optim. Theory Appl. 3 (1969), 5, 306–315 (1969) Zbl0172.12501MR0246661DOI10.1007/BF00931370
  4. Basile G., Marro G., 10.1080/00207177308932438, Internat. J. Control 17 (1973), 5, 931–943 (1973) Zbl0255.93009MR0325195DOI10.1080/00207177308932438
  5. Basile G., Hamano, F., Marro G., Some new results on unknown input observability, In: Proc. Eighth Triennial World Congress of the International Federation of Automatic Control, Kyoto, Japan 1981, pp. 21–25 (1981) 
  6. Basile G., Marro G., Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, NJ 1992 Zbl0758.93002MR1149379
  7. Bhattacharyya S. P., Disturbance rejection in linear systems, Internat. J. Systems Science 5 (1974), 7, 931–943 (1974) Zbl0295.93003MR0363580
  8. Bitmead R. R., Gevers, M., Wertz V., Adaptive Optimal Control-The Thinking Man’s GPC, Prentice Hall, Englewood Cliffs, NJ, 1990 Zbl0751.93052
  9. Estrada M. Bonilla, Malabre M., 10.1109/9.769398, IEEE Trans. Automat. Control AC-44 (1999), 6, 1311–1315 (1999) MR1689159DOI10.1109/9.769398
  10. Estrada M. Bonilla, Malabre M., 10.1109/9.898711, IEEE Trans. Automat. Control AC-46 (2001), 1, 160–165 MR1809481DOI10.1109/9.898711
  11. Chen B. M., H control and its applications, (Lecture Notes in Control and Inform. Sciences 235.), Springer–Verlag, New York 1999 Zbl0912.93003MR1636909
  12. Chen B. M., Robust and H Control, (Communications and Control Engineering Series.) Springer, New York 2000 Zbl0996.93002MR1761689
  13. Davison E. J., Scherzinger B. M., Perfect control of the robust servomechanism problem, IEEE Trans. Automat. Control AC-32 (1987), 8, 689–701 (1987) Zbl0625.93051
  14. Nicolao G. De, Strada S., 10.1109/9.554406, IEEE Trans. Automat. Control 42 (1997), 2, 257–260 (1997) Zbl0880.93042MR1438456DOI10.1109/9.554406
  15. Devasia S., Chen, D., Paden B., 10.1109/9.508898, IEEE Trans. Automat. Control 41 (1996), 7, 930–942 (1996) Zbl0859.93006MR1398777DOI10.1109/9.508898
  16. Dorato P., 10.1109/TSSC.1969.300243, IEEE. Trans. System Sci. and Cybernetics SSC-5 (1969), 1, 43–48 (1969) Zbl0184.18402DOI10.1109/TSSC.1969.300243
  17. Francis B. A., 10.1109/TAC.1979.1102097, IEEE Trans. Automat. Control AC-24 (1979), 616–621 (1979) Zbl0424.49022MR0538820DOI10.1109/TAC.1979.1102097
  18. Gross E., Tomizuka M., 10.1109/87.338659, IEEE Trans. Control Syst. Techn. 3 (1994), 4, 382–391 (1994) DOI10.1109/87.338659
  19. Hunt L. R., Meyer, G., Su R., 10.1109/9.489285, IEEE Trans. Automat. Control 41 (1996), 4, 608–611 (1996) Zbl0864.93055MR1385335DOI10.1109/9.489285
  20. Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M., 10.1115/1.3139721, Trans. ASME J. Dynamic Systems, Measurement Control 105 (1983), 3, 11–17 (1983) Zbl0512.93029DOI10.1115/1.3139721
  21. Kwon W. H., Pearson A. E., 10.1109/TAC.1978.1101749, IEEE Trans. Automat. Control AC-23 (1978), 3, 479–481 (1978) Zbl0378.93038MR0496918DOI10.1109/TAC.1978.1101749
  22. Malabre M., Kučera V., 10.1109/TAC.1984.1103502, IEEE Trans. Automat. Control AC-29 (1982), 3, 266–268 (1982) DOI10.1109/TAC.1984.1103502
  23. Marro G., Fantoni M., Using preaction with infinite or finite preview for perfect or almost perfect digital tracking, In: Proceedings of the Melecon’96 – 8th Mediterranean Electrotechnical Conference, Bari 1996, Vol. 1, pp. 246–249 (1996) 
  24. Marro G., Prattichizzo, D., Zattoni E., 10.1109/9.981727, IEEE Trans. Automat. Control 47 (2002), 1 MR1879695DOI10.1109/9.981727
  25. Marro G., Prattichizzo, D., Zattoni E., H 2 optimal decoupling of previewed signals with FIR systems, In: Proc. 1st IFAC Symposium on System Structure and Control (SSSC 2001), (P. Horáček, ed.), Prague 2001 
  26. Marro G., Prattichizzo, D., Zattoni E., A unified algorithmic setting for signal–decoupling compensators and unknown–input observers, In: Proc. 39th Conference on Decision and Control (CDC 2000), Sydney 2000 
  27. Marro G., Prattichizzo, D., Zattoni E., A nested computational scheme for discrete-time cheap and singular LQ control, In: Proc. 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation (IMACS 2000), Lausanne 2000 
  28. Marro G., Prattichizzo, D., Zattoni E., Convolution profiles for noncausal inversion of multivariable discrete-time systems, In: Proc. 8th IEEE Mediterranean Conference on Control & Automation (MED 2000), (P. P. Groumpos, N. T. Koussoulas, and P. J. Antsaklis, eds.), University of Patras, Rio 2000 
  29. Marro G., Prattichizzo, D., Zattoni E., An algorithmic solution to the discrete-time cheap and singular LQR problems, In: Proc. 14th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2000), Perpignan 2000 
  30. Morse A. S., 10.1137/0311037, SIAM J. Control 11 (1973), 3, 446–465 (1973) Zbl0259.93011MR0386762DOI10.1137/0311037
  31. Park S. H., Kim P. S., Kwon O.-K., Kwon W. H., 10.1016/S0005-1098(00)00063-7, Automatica 36 (2000), 1481–1488 Zbl0959.93517MR1829760DOI10.1016/S0005-1098(00)00063-7
  32. Qiu L., Davison E. J., Performance limitations of non-minimum phase systems in the servomechanism problem, IEEE Trans. Automat. Control 29 (1993), 2, 337–349 (1993) Zbl0778.93053MR1211291
  33. Saberi A., Sannuti, P., Chen B. M., H 2 Optimal Control, (System and Control Engineering.) Prentice Hall International, London 1995 
  34. Saberi A., Stoorvogel A. A., Sannuti P., Control of linear systems with regulation and input constraints, (Communications and Control Engineering Series.) Springer, New York 2000 Zbl0977.93001MR1756793
  35. Sain M. K., Massey J. L., 10.1109/TAC.1969.1099133, IEEE Trans. Automat. Control AC-14 (1969), 2, 141–149 (1969) MR0246664DOI10.1109/TAC.1969.1099133
  36. Silverman L., 10.1109/TAC.1969.1099169, IEEE Trans. Automat. Control AC-14 (1969), 3, 270–276 (1969) MR0267927DOI10.1109/TAC.1969.1099169
  37. Trentelman H. L., Stoorvogel A. A., Hautus M., Control theory for linear systems, (Communications and Control Engineering Series.) Springer, New York 2001 Zbl0963.93004MR1851149
  38. Willems J. C., 10.1016/S0167-6911(82)80012-1, Systems Control Lett. 1 (1982), 4, 277–282 (1982) Zbl0473.93032MR0670212DOI10.1016/S0167-6911(82)80012-1
  39. Wonham W. M., Linear Multivariable Control: A Geometric Approach, Third edition. Springer, New York 1985 Zbl0609.93001MR0770574
  40. Wonham W. M., Morse A. S., 10.1137/0308001, SIAM J. Control 8 (1970), 1, 1–18 (1970) Zbl0206.16404MR0270771DOI10.1137/0308001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.