Nonregular decoupling with stability of two-output systems
Javier Ruiz; Jorge A. Torres Muñoz; Francisco Lizaola
Kybernetika (2002)
- Volume: 38, Issue: 5, page [553]-569
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRuiz, Javier, Muñoz, Jorge A. Torres, and Lizaola, Francisco. "Nonregular decoupling with stability of two-output systems." Kybernetika 38.5 (2002): [553]-569. <http://eudml.org/doc/33603>.
@article{Ruiz2002,
abstract = {In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list $I_\{2\}$ is greater than or equal to the infinite and unstable structure of the proper and stable part of the stable interactor of the system. A constructive procedure to find a state feedback, which achieves decoupling with stability, is also presented.},
author = {Ruiz, Javier, Muñoz, Jorge A. Torres, Lizaola, Francisco},
journal = {Kybernetika},
keywords = {linear multivariable system; decoupling; stability; linear multivariable system; decoupling; stability},
language = {eng},
number = {5},
pages = {[553]-569},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Nonregular decoupling with stability of two-output systems},
url = {http://eudml.org/doc/33603},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Ruiz, Javier
AU - Muñoz, Jorge A. Torres
AU - Lizaola, Francisco
TI - Nonregular decoupling with stability of two-output systems
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 5
SP - [553]
EP - 569
AB - In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list $I_{2}$ is greater than or equal to the infinite and unstable structure of the proper and stable part of the stable interactor of the system. A constructive procedure to find a state feedback, which achieves decoupling with stability, is also presented.
LA - eng
KW - linear multivariable system; decoupling; stability; linear multivariable system; decoupling; stability
UR - http://eudml.org/doc/33603
ER -
References
top- Descusse J., Dion J. M., 10.1109/TAC.1982.1103041, IEEE Trans. Automat. Control AC-27 (1982), 971–974 (1982) Zbl0485.93042MR0680500DOI10.1109/TAC.1982.1103041
- Descusse J., Lafay J. F., Malabre M., 10.1109/TAC.1985.1104089, IEEE Trans. Automat. Control AC-30 (1985), 914–918 (1985) Zbl0566.93010MR0799492DOI10.1109/TAC.1985.1104089
- Descusse J., Lafay J. F., Malabre M., 10.1109/9.1289, IEEE Trans. Automat. Control 33 (1988), 732–739 (1988) Zbl0656.93018MR0950794DOI10.1109/9.1289
- Dion J. M., Commault C., 10.1137/0326005, SIAM J. Control Optim. 26 (1988), 66–82 (1988) Zbl0646.93049MR0923304DOI10.1137/0326005
- Falb P. L., Wolovich W. A., 10.1109/TAC.1967.1098737, IEEE Trans. Automat. Control AC-12 (1967), 651–659 (1967) DOI10.1109/TAC.1967.1098737
- Herrera A., Sur le decouplage des systemes lineaires par des lois statiques non regulieres, PhD Thesis, Université de Nantes, Ecole Centrale Nantes 1991
- Herrera A., Torres J. A., Ruiz-León J., The nonregular Morgan’s problem: A polynomial solution for the case of two outputs, In: Proc. European Control Conference (ECC’93), Groningen 1993, pp. 2275–2278 (1993)
- G. J. C. Martínez, Malabre M., 10.1109/9.362849, IEEE Trans. Automat. Control 39 (1994), 2457–2460 (1994) Zbl0825.93252MR1337570DOI10.1109/9.362849
- Morse A. S., 10.1137/0311037, SIAM J. Control 11 (1973), 446–465 (1973) Zbl0259.93011MR0386762DOI10.1137/0311037
- Ruiz-León J., Zagalak, P., Eldem V., On the Morgan problem with stability, Kybernetika 32 (1996), 425–441 (1996) MR1420133
- Vidyasagar M., Control System Synthesis: A Factorization Approach, MIT Press, Cambridge, MA 1985 Zbl0655.93001MR0787045
- Wolovich W. A., Falb P. L., 10.1137/0314063, SIAM J. Control Optim. 14 (1976), 996–1008 (1976) Zbl0344.93019MR0424306DOI10.1137/0314063
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.