A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems

Eduardo Aranda-Bricaire; Ülle Kotta

Kybernetika (2004)

  • Volume: 40, Issue: 2, page [197]-206
  • ISSN: 0023-5954

Abstract

top
The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.

How to cite

top

Aranda-Bricaire, Eduardo, and Kotta, Ülle. "A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems." Kybernetika 40.2 (2004): [197]-206. <http://eudml.org/doc/33694>.

@article{Aranda2004,
abstract = {The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.},
author = {Aranda-Bricaire, Eduardo, Kotta, Ülle},
journal = {Kybernetika},
keywords = {controlled invariance; dynamic state feedback; disturbance decoupling; differential forms; controlled invariance; dynamic state feedback; disturbance decoupling; differential form},
language = {eng},
number = {2},
pages = {[197]-206},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems},
url = {http://eudml.org/doc/33694},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Aranda-Bricaire, Eduardo
AU - Kotta, Ülle
TI - A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 2
SP - [197]
EP - 206
AB - The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.
LA - eng
KW - controlled invariance; dynamic state feedback; disturbance decoupling; differential forms; controlled invariance; dynamic state feedback; disturbance decoupling; differential form
UR - http://eudml.org/doc/33694
ER -

References

top
  1. Aranda-Bricaire E., Kotta Ü., Dynamic disturbance decoupling for discrete-time nonlinear systems: a linear algebraic solution, In: Proc. IFAC Conference on System Structure and Control, Nantes, France, July 1995, pp. 155–160 (1995) 
  2. Aranda-Bricaire E., Kotta, Ü., Moog C., 10.1137/S0363012994267315, SIAM J. Control Optim. 34 (1996), 1999–2023 (1996) Zbl0863.93014MR1416497DOI10.1137/S0363012994267315
  3. Aranda-Bricaire E., Kotta Ü., 10.1109/9.898712, IEEE Trans. Automat. Control 46 (2001), 165–171 Zbl1056.93549MR1809482DOI10.1109/9.898712
  4. Delaleau E., Fliess M., Algorithme de structure, filtrations et découplage, C. R. Acad. Sci. Paris 315 (1992), Serie I, 101–106 (1992) Zbl0791.68113MR1172415
  5. Delaleau E., Fliess M., An algebraic interpretation of the structure algorithm with an application to feedback decoupling, In: Nonlinear Control Systems Design – Selected Papers from the 2nd IFAC Symposium (M. Fliess, ed.), Pergamon Press, Oxford 1993, pp. 489–494 (1993) 
  6. Fliegner T., Nijmeijer H., Dynamic disturbance decoupling for nonlinear discrete-time systems, In: Proc. 33rd IEEE Conference on Decision and Control, Buena Vista, Florida 1994, Volume 2, pp. 1790–1791 (1994) 
  7. Fliess M., 10.1515/form.1990.2.213, Forum Mathematicum 2 (1990), 213–232 (1990) Zbl0706.93039MR1050406DOI10.1515/form.1990.2.213
  8. Grizzle J. W., 10.1109/TAC.1985.1104079, IEEE Trans. Automat. Control 30 (1985), 868–873 (1985) MR0799480DOI10.1109/TAC.1985.1104079
  9. Grizzle J. W., 10.1137/0331046, SIAM J. Control Optim. 31 (1993), 1026–1044 (1993) Zbl0785.93036MR1227545DOI10.1137/0331046
  10. Huijberts H. J. C., Moog C. H., Controlled invariance of nonlinear systems: nonexact forms speak louder than exact forms, In: Systems and Networks: Mathematical Theory and Application, Volume II (U. Helmke, R. Mennicken, and J. Saurer, eds.), Akademie Verlag, Berlin 1994, pp. 245–248 (1994) Zbl0925.93412
  11. Huijberts H. J. C., Moog C. H., Andiarti R., 10.1137/S0363012994277190, SIAM J. Control Optim. 35 (1997), 953–979 (1997) Zbl1047.93526MR1444345DOI10.1137/S0363012994277190
  12. Kotta Ü., Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and noninvertible case, Proc. Estonian Academy of Sciences. Phys. Math. 41 (1992), 14–22 (1992) MR1167108
  13. Kotta Ü., Dynamic disturbance decoupling for discrete-time nonlinear systems: a solution in terms of system invariants, Proc. Estonian Academy of Sciences Phys. Math. 43 (1994), 147–159 (1994) Zbl0837.93024MR1315192
  14. Kotta Ü., Nijmeijer H., Dynamic disturbance decoupling for nonlinear discrete-time systems (in Russian), Proc. Academy of Sciences of USSR,. Technical Cybernetics, 1991, pp. 52–59 (1991) 
  15. Monaco S., Normand-Cyrot D., 10.1016/S0167-6911(84)80102-4, Systems Control Lett. 5 (1984), 191–196 (1984) Zbl0556.93031MR0777852DOI10.1016/S0167-6911(84)80102-4
  16. Nijmeijer H., Schaft A. van der, Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin 1990 MR1047663
  17. Perdon A. M., Conte, G., Moog C. H., Some canonical properties of nonlinear systems, In: Realization and Modeling in System Theory (M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 89–96 (1990) Zbl0729.93035MR1115318

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.