A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
Eduardo Aranda-Bricaire; Ülle Kotta
Kybernetika (2004)
- Volume: 40, Issue: 2, page [197]-206
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAranda-Bricaire, Eduardo, and Kotta, Ülle. "A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems." Kybernetika 40.2 (2004): [197]-206. <http://eudml.org/doc/33694>.
@article{Aranda2004,
abstract = {The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.},
author = {Aranda-Bricaire, Eduardo, Kotta, Ülle},
journal = {Kybernetika},
keywords = {controlled invariance; dynamic state feedback; disturbance decoupling; differential forms; controlled invariance; dynamic state feedback; disturbance decoupling; differential form},
language = {eng},
number = {2},
pages = {[197]-206},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems},
url = {http://eudml.org/doc/33694},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Aranda-Bricaire, Eduardo
AU - Kotta, Ülle
TI - A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 2
SP - [197]
EP - 206
AB - The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.
LA - eng
KW - controlled invariance; dynamic state feedback; disturbance decoupling; differential forms; controlled invariance; dynamic state feedback; disturbance decoupling; differential form
UR - http://eudml.org/doc/33694
ER -
References
top- Aranda-Bricaire E., Kotta Ü., Dynamic disturbance decoupling for discrete-time nonlinear systems: a linear algebraic solution, In: Proc. IFAC Conference on System Structure and Control, Nantes, France, July 1995, pp. 155–160 (1995)
- Aranda-Bricaire E., Kotta, Ü., Moog C., 10.1137/S0363012994267315, SIAM J. Control Optim. 34 (1996), 1999–2023 (1996) Zbl0863.93014MR1416497DOI10.1137/S0363012994267315
- Aranda-Bricaire E., Kotta Ü., 10.1109/9.898712, IEEE Trans. Automat. Control 46 (2001), 165–171 Zbl1056.93549MR1809482DOI10.1109/9.898712
- Delaleau E., Fliess M., Algorithme de structure, filtrations et découplage, C. R. Acad. Sci. Paris 315 (1992), Serie I, 101–106 (1992) Zbl0791.68113MR1172415
- Delaleau E., Fliess M., An algebraic interpretation of the structure algorithm with an application to feedback decoupling, In: Nonlinear Control Systems Design – Selected Papers from the 2nd IFAC Symposium (M. Fliess, ed.), Pergamon Press, Oxford 1993, pp. 489–494 (1993)
- Fliegner T., Nijmeijer H., Dynamic disturbance decoupling for nonlinear discrete-time systems, In: Proc. 33rd IEEE Conference on Decision and Control, Buena Vista, Florida 1994, Volume 2, pp. 1790–1791 (1994)
- Fliess M., 10.1515/form.1990.2.213, Forum Mathematicum 2 (1990), 213–232 (1990) Zbl0706.93039MR1050406DOI10.1515/form.1990.2.213
- Grizzle J. W., 10.1109/TAC.1985.1104079, IEEE Trans. Automat. Control 30 (1985), 868–873 (1985) MR0799480DOI10.1109/TAC.1985.1104079
- Grizzle J. W., 10.1137/0331046, SIAM J. Control Optim. 31 (1993), 1026–1044 (1993) Zbl0785.93036MR1227545DOI10.1137/0331046
- Huijberts H. J. C., Moog C. H., Controlled invariance of nonlinear systems: nonexact forms speak louder than exact forms, In: Systems and Networks: Mathematical Theory and Application, Volume II (U. Helmke, R. Mennicken, and J. Saurer, eds.), Akademie Verlag, Berlin 1994, pp. 245–248 (1994) Zbl0925.93412
- Huijberts H. J. C., Moog C. H., Andiarti R., 10.1137/S0363012994277190, SIAM J. Control Optim. 35 (1997), 953–979 (1997) Zbl1047.93526MR1444345DOI10.1137/S0363012994277190
- Kotta Ü., Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and noninvertible case, Proc. Estonian Academy of Sciences. Phys. Math. 41 (1992), 14–22 (1992) MR1167108
- Kotta Ü., Dynamic disturbance decoupling for discrete-time nonlinear systems: a solution in terms of system invariants, Proc. Estonian Academy of Sciences Phys. Math. 43 (1994), 147–159 (1994) Zbl0837.93024MR1315192
- Kotta Ü., Nijmeijer H., Dynamic disturbance decoupling for nonlinear discrete-time systems (in Russian), Proc. Academy of Sciences of USSR,. Technical Cybernetics, 1991, pp. 52–59 (1991)
- Monaco S., Normand-Cyrot D., 10.1016/S0167-6911(84)80102-4, Systems Control Lett. 5 (1984), 191–196 (1984) Zbl0556.93031MR0777852DOI10.1016/S0167-6911(84)80102-4
- Nijmeijer H., Schaft A. van der, Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin 1990 MR1047663
- Perdon A. M., Conte, G., Moog C. H., Some canonical properties of nonlinear systems, In: Realization and Modeling in System Theory (M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 89–96 (1990) Zbl0729.93035MR1115318
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.