A note on a class of equilibrium problems with equilibrium constraints
Kybernetika (2004)
- Volume: 40, Issue: 5, page [585]-594
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOutrata, Jiří V.. "A note on a class of equilibrium problems with equilibrium constraints." Kybernetika 40.5 (2004): [585]-594. <http://eudml.org/doc/33721>.
@article{Outrata2004,
abstract = {The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation.},
author = {Outrata, Jiří V.},
journal = {Kybernetika},
keywords = {hierarchical game; Nash equilibrium; stationarity conditions; hierarchical game; Nash equilibrium; stationarity condition},
language = {eng},
number = {5},
pages = {[585]-594},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A note on a class of equilibrium problems with equilibrium constraints},
url = {http://eudml.org/doc/33721},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Outrata, Jiří V.
TI - A note on a class of equilibrium problems with equilibrium constraints
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 5
SP - [585]
EP - 594
AB - The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation.
LA - eng
KW - hierarchical game; Nash equilibrium; stationarity conditions; hierarchical game; Nash equilibrium; stationarity condition
UR - http://eudml.org/doc/33721
ER -
References
top- J.-P.Aubin, Optima and Equilibria, Springer–Verlag, Berlin 1993 Zbl1074.91579MR1217485
- Clarke F. H., Optimization and Nonsmooth Analysis, Wiley, New York 1983 Zbl0696.49002MR0709590
- Dontchev A. D., Rockafellar R. T., 10.1137/S1052623495284029, SIAM J. Optim. 7 (1996), 1087–1105 (1996) MR1416530DOI10.1137/S1052623495284029
- Eaves B. C., 10.1007/BF01584975, Math. Programming 3 (1972), 1–22 (1972) Zbl0276.55004MR0303953DOI10.1007/BF01584975
- Fang S. C., Peterson E. L., 10.1007/BF00935344, J. Optim. Theory Appl. 38 (1982), 363–383 (1982) Zbl0471.49007MR0686212DOI10.1007/BF00935344
- Harker P. T., Choi S. C., A Penalty Function Approach for Mathematical Programs with Variational Inequality Constraints, WP 87-08-08, University of Pennsylvania Zbl0732.90075
- Hu X., Ralph D., Ralph E. K., Bardsley, P., Ferris M. C., The Effect of Transmission Capacities on Competition in Deregulated Electricity Markets, Preprint 2002
- Luo Z.-Q., Pang J.-S., Ralph D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge 1996 Zbl1139.90003MR1419501
- Mordukhovich B. S., Approximation Methods in Problems of Optimization and Control (in Russian), Nauka, Moscow 1988 MR0945143
- Mordukhovich B. S., 10.1006/jmaa.1994.1144, J. Math. Anal. Appl. 183 (1994), 250–288 (1994) Zbl0807.49016MR1273445DOI10.1006/jmaa.1994.1144
- Mordukhovich B. S., Optimization and Equilibrium Problems with Equilibrium Constraints, Preprint 2003. To appear in Omega Zbl1161.49015MR2473868
- Mordukhovich B. S., 10.1080/1055678042000218966, Optimization Methods & Software 19 (2004), 5 MR2095348DOI10.1080/1055678042000218966
- Murphy F. H., Sherali H. D., Soyster A. L., 10.1007/BF01585096, Math. Programming 24 (1982), 92–106 (1982) Zbl0486.90015MR0667941DOI10.1007/BF01585096
- Nash J. F., 10.2307/1969529, Ann. of Math. 54 (1951), 286–295 (1951) Zbl0045.08202MR0043432DOI10.2307/1969529
- Outrata J. V., 10.1287/moor.24.3.627, Math. Oper. Res. 24 (1999), 627–644 (1999) Zbl1039.90088MR1854246DOI10.1287/moor.24.3.627
- Outrata J. V., On constrained qualifications for mathematical programs with mixed complementarity constraints, In: Complementarity: Applications, Algorithms and Extensions (M. C. Ferris, O. L. Mangasarian and J.-S. Pang, eds.), Kluwer, Dordrecht 2001, pp. 253–272 MR1818625
- Outrata J. V., Zowe J., 10.1007/BF01585759, Math. Programming 68 (1995), 105–130 (1995) Zbl0835.90093MR1312107DOI10.1007/BF01585759
- Outrata J. V., Kočvara, M., Zowe J., Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Kluwer, Dordrecht 1998 Zbl0947.90093MR1641213
- Robinson S. M., 10.1007/BFb0120929, Math. Programming Stud. 14 (1981), 206–214 (1981) Zbl0449.90090MR0600130DOI10.1007/BFb0120929
- Scholtes S., On the existence and computation of EPEC solutions, A talk given at the ICCP Conference in Cambridge, 2002
- Scheel H., Scholtes S., 10.1287/moor.25.1.1.15213, Math. Oper. Res. 25 (2000), 1–22 MR1854317DOI10.1287/moor.25.1.1.15213
- Ye J. J., Ye X. Y., 10.1287/moor.22.4.977, Math. Oper. Res. 22 (1997), 977–997 (1997) Zbl1088.90042MR1484692DOI10.1287/moor.22.4.977
Citations in EuDML Documents
top- René Henrion, Werner Römisch, On -stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling
- René Henrion, Jiří Outrata, Thomas Surowiec, Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market
- Truong Q. Bao, Boris S. Mordukhovich, Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints
- René Henrion, Jiří Outrata, Thomas Surowiec, Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.