Bound on extended -divergences for a variety of classes
Pietro Cerone; Sever Silvestru Dragomir; Ferdinand Österreicher
Kybernetika (2004)
- Volume: 40, Issue: 6, page [745]-756
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCerone, Pietro, Dragomir, Sever Silvestru, and Österreicher, Ferdinand. "Bound on extended $f$-divergences for a variety of classes." Kybernetika 40.6 (2004): [745]-756. <http://eudml.org/doc/33733>.
@article{Cerone2004,
abstract = {The concept of $f$-divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function $f$ on the interval $[0,\infty )$. The choice of this parameter $f$ can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of $f$-divergences are given and the class of $\chi ^\{\alpha \}$-divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension of the set of $f$-divergences. The class of $\chi ^\{\alpha \}$-divergences and four further classes of $f$-divergences are used in order to investigate limitations and strengths of the inequalities derived.},
author = {Cerone, Pietro, Dragomir, Sever Silvestru, Österreicher, Ferdinand},
journal = {Kybernetika},
keywords = {$f$-divergences; bounds; Ostrowki’s inequality; Ostrowki's inequality},
language = {eng},
number = {6},
pages = {[745]-756},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bound on extended $f$-divergences for a variety of classes},
url = {http://eudml.org/doc/33733},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Cerone, Pietro
AU - Dragomir, Sever Silvestru
AU - Österreicher, Ferdinand
TI - Bound on extended $f$-divergences for a variety of classes
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 6
SP - [745]
EP - 756
AB - The concept of $f$-divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function $f$ on the interval $[0,\infty )$. The choice of this parameter $f$ can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of $f$-divergences are given and the class of $\chi ^{\alpha }$-divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension of the set of $f$-divergences. The class of $\chi ^{\alpha }$-divergences and four further classes of $f$-divergences are used in order to investigate limitations and strengths of the inequalities derived.
LA - eng
KW - $f$-divergences; bounds; Ostrowki’s inequality; Ostrowki's inequality
UR - http://eudml.org/doc/33733
ER -
References
top- Cerone P., Dragomir S. S., Pearce C. E. M., A generalized trapezoid inequality for functions of bounded variation, Turkish J. Math. 24 (2000), 2, 147–163 Zbl0974.26011MR1796667
- Csiszár I., Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85–107 (1963) MR0164374
- Dragomir S. S., On the Ostrowski’s inequalities for mappings with bounded variation and applications, Math. Inequ. Appl. 4 (2001), 1, 59–66 MR1923350
- Dragomir S. S., Gluscević, V., Pearce C. M. E., 10.1016/S0362-546X(01)00361-3, Nonlinear Anal. 47 (2001), 4, 2375–2386 MR1971644DOI10.1016/S0362-546X(01)00361-3
- Kafka P., Österreicher, F., Vincze I., On powers of -divergences defining a distance, Studia Sci. Math. Hungar. 26 (1991), 415–422 (1991) Zbl0771.94004MR1197090
- Liese F., Vajda I., Convex Statistical Distances, (Teubner–Texte zur Mathematik, Band 95.) Teubner, Leipzig 1987 Zbl0656.62004MR0926905
- Menéndez M., Morales D., Pardo, L., Vajda I., 10.1080/03610929808832117, Comm. Statist. Theory Methods 27 (1998), 3, 609–633 (1998) Zbl1126.62300MR1619038DOI10.1080/03610929808832117
- Österreicher F., Vajda I., 10.1007/BF02517812, Ann. Inst. Statist. Math. 55 (2003), 3, 639–653 Zbl1052.62002MR2007803DOI10.1007/BF02517812
- Puri M. L., Vincze I., 10.1016/0167-7152(90)90060-K, Statist. Probab. Lett. 9 (1990), 223–228 (1990) MR1045188DOI10.1016/0167-7152(90)90060-K
- Wegenkittl S., 10.1109/18.945259, IEEE Trans. Inform. Theory 47 (2001), 6, 2480–2489 Zbl1021.94512MR1873933DOI10.1109/18.945259
- Wegenkittl S., 10.1006/jmva.2001.2051, J. Multivariate Anal. 83 (2002), 288–302 MR1945955DOI10.1006/jmva.2001.2051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.