Non-linear observer design method based on dissipation normal form
Kybernetika (2005)
- Volume: 41, Issue: 1, page [59]-74
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topČerný, Václav, and Hrušák, Josef. "Non-linear observer design method based on dissipation normal form." Kybernetika 41.1 (2005): [59]-74. <http://eudml.org/doc/33739>.
@article{Černý2005,
abstract = {Observer design is one of large fields investigated in automatic control theory and a lot of articles have already been dedicated to it in technical literature. Non-linear observer design method based on dissipation normal form proposed in the paper represents a new approach to solving the observer design problem for a certain class of non-linear systems. As the theoretical basis of the approach the well known dissipative system theory has been chosen. The main achievement of the contribution consists in the fact that the error dynamics of the observer is priory chosen non-linear. It provides more flexibility in the sense of specifying error convergence properties to zero in comparison with other techniques. Lyapunov’s stability theory is the other basic point of the approach.},
author = {Černý, Václav, Hrušák, Josef},
journal = {Kybernetika},
keywords = {invariance; structure; stability; structural condition; Lyapunov function; invariance; stability; structural condition; Lyapunov function},
language = {eng},
number = {1},
pages = {[59]-74},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-linear observer design method based on dissipation normal form},
url = {http://eudml.org/doc/33739},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Černý, Václav
AU - Hrušák, Josef
TI - Non-linear observer design method based on dissipation normal form
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 1
SP - [59]
EP - 74
AB - Observer design is one of large fields investigated in automatic control theory and a lot of articles have already been dedicated to it in technical literature. Non-linear observer design method based on dissipation normal form proposed in the paper represents a new approach to solving the observer design problem for a certain class of non-linear systems. As the theoretical basis of the approach the well known dissipative system theory has been chosen. The main achievement of the contribution consists in the fact that the error dynamics of the observer is priory chosen non-linear. It provides more flexibility in the sense of specifying error convergence properties to zero in comparison with other techniques. Lyapunov’s stability theory is the other basic point of the approach.
LA - eng
KW - invariance; structure; stability; structural condition; Lyapunov function; invariance; stability; structural condition; Lyapunov function
UR - http://eudml.org/doc/33739
ER -
References
top- Atassi A. N., Khalil H. K., 10.1109/9.788534, IEEE Trans. Automat. Control 44 (1999), 1672–1687 (1999) Zbl0958.93079MR1709863DOI10.1109/9.788534
- Atassi A. N., Khalil H. K., 10.1109/9.920793, IEEE Trans. Automat. Control 46 (2001), 742–746 Zbl1055.93064MR1833028DOI10.1109/9.920793
- Bestle D., Zeitz M., 10.1080/00207178308933084, Internat. J. Control 38 (1983), 419–431 (1983) MR0708425DOI10.1080/00207178308933084
- Birk J., Zeitz M., 10.1080/00207178808906138, Internat. J. Control 47 (1988), 1823–1836 (1988) MR0947071DOI10.1080/00207178808906138
- Chiasson J. N., Novotnak R. T., 10.1109/9.241582, IEEE Trans. Automat. Control 38 (1993), 1584–1588 (1993) MR1242915DOI10.1109/9.241582
- Černý V., Hrušák J., Separation principle for a class of non-linear systems, In: Proc. 11th IEEE Mediterranean Conference on Control and Automation, Rhodes 2003
- Černý V., Hrušák J., On some new similarities between nonlinear observer and filter design, In: Preprints 6th IFAC Symposium on Nonlinear Control Systems, Vol. 2, Stuttgart 2004, pp. 609–614
- Esfandiari F., Khalil H. K., 10.1080/00207179208934355, Internat. J. Control 56 (1992), 1007–1037 (1992) Zbl0762.93069MR1187838DOI10.1080/00207179208934355
- Gauthier J. P., Bornard G., 10.1109/TAC.1981.1102743, IEEE Trans. Automat. Control 26 (1981), 922–926 (1981) Zbl0553.93014MR0635851DOI10.1109/TAC.1981.1102743
- Gauthier J. P., Hammouri, H., Othman S., 10.1109/9.256352, IEEE Trans. Automat. Control 37 (1992), 875–880 (1992) Zbl0775.93020MR1164571DOI10.1109/9.256352
- Glendinning P., Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press, New York 1994 Zbl0808.34001MR1304054
- Glumineau A., Moog C. H., Plestan F., 10.1109/9.489283, IEEE Trans. Automat. Control 41 (1996), 598–603 (1996) Zbl0851.93018MR1385333DOI10.1109/9.489283
- Hrušák J., Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung über die Regelungstheorie, Mathematisches Forschungsinstitut, Oberwolfach 196
- Hrušák J., Černý V., Non-linear and signal energy optimal asymptotic filter design, J. Systemics, Cybernetics and Informatics 1 (2003), 55–62
- Keller H., 10.1080/00207178708934024, Internat. J. Control 46 (1987), 1915–1930 (1987) MR0924264DOI10.1080/00207178708934024
- Krener A. J., Isidori A., Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47–52 (1983) Zbl0524.93030MR0713426
- Krener A. J., Respondek W., 10.1137/0323016, SIAM J. Control Optim. 23 (1985), 197–216 (1985) Zbl0569.93035MR0777456DOI10.1137/0323016
- Morales V. L., Plestan, F., Glumineau A., Linearization by completely generalized input-output injection, Kybernetika 35 (1999), 793–802 (1999) MR1747977
- Patel M. R., Fallside, F., Parks P. C., A new proof of the Routh and Hurwitz criterion by the second method of Lyapunov with application to optimum transfer functions, IEEE Trans. Automat. Control 9 (1963), 319–322 (1963)
- Plestan F., Glumineau A., 10.1016/S0167-6911(97)00025-X, Systems Control Lett. 31 (1997), 115–128 (1997) Zbl0901.93013MR1461807DOI10.1016/S0167-6911(97)00025-X
- Proychev T. Ph., Mishkov R. L., 10.1016/0005-1098(93)90145-J, Automatica 29 (1993), 495–498 (1993) Zbl0772.93017MR1211308DOI10.1016/0005-1098(93)90145-J
- Rayleigh J. W., The Theory of Sound, Dover Publications, New York 1945 Zbl0061.45904MR0016009
- Schwarz H. R., 10.1007/BF01601178, Z. Angew. Math. Phys. 7 (1956), 473–500 (1956) MR0083194DOI10.1007/BF01601178
- Willems J. C., 10.1007/BF00276493, Part I: general theory. Arch. Rational Mech. Anal. 45 (1972), 321–351 (1972) Zbl0252.93003MR0527462DOI10.1007/BF00276493
- Zeitz M., Observability canonical (phase-variable) form for non-linear time-variable systems, Internat. J. Control 15 (1984), 949–958 (1984) Zbl0546.93011MR0763769
- Zhou K., Doyle J. C., Essentials of Robust Control, Prentice Hall, NJ 1998 Zbl0890.93003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.