Unifying approach to observer-filter design
Kybernetika (2009)
- Volume: 45, Issue: 3, page 445-457
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- A separation principle for the stabilization of a class of nonlinear systems, IEEE Trans. Automat. Control 44 (1999), 1672–1687. MR1709863
- A separation principle for the control of a class of nonlinear systems, IEEE Trans. Automat. Control 46 (2001), 742–746. MR1833028
- Canonical form observer design for non-linear time-variable systems, Internat. J. Control 38 (1983), 419–431. MR0708425
- Filtering for Stochastic Processes with Applications to Guidance, Interscience Publishers, New York 1968. MR0267946
- Non-linear observer design method based on dissipation normal form, Kybernetika 41 (2005), 59–74. MR2131125
- Comparing frequency domain, optimal and asymptotic filtering: a tutorial, Internat. J. Control and Intelligent Systems 34 (2006), 136–142. MR2228286
- Generalized Tellegen principle and physical correctness of system representations, J. Systemics, Cybernetics and Informatics 4 (2006), 38–42.
- Output feedback stabilization of fully linearizable systems, Internat. J. Control 56 (1992), 1007–1037. MR1187838
- Observability for any of a class of nonlinear systems, IEEE Trans. Automat. Control 26 (1981), 922–926. MR0635851
- Modern Filter Design, Prentice Hall, Englewood Cliffs, New Jersey 1981.
- Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press, New York 1994. Zbl0808.34001MR1304054
- New algebro-geometric conditions for the linearization by input-output injection, IEEE Trans. Automat. Control 41 (1996), 598–603. MR1385333
- Nonlinear controllability and observability, IEEE Trans. Automat. Control 22 (1977), 728–740. MR0476017
- Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung über die Regelungstheorie, Mathematisches Forschungsinstitut, Stuttgart 1969.
- Non-linear and signal energy optimal asymptotic filter design, J. Systemics, Cybernetics and Informatics 1 (2003), 55–62.
- Digital Signal Processing: A Practical Approach, Addison Wesley, Wokingham 1993.
- Stochastic Processes and Filtering Theory, Academic Press, New York 1970. Zbl0203.50101
- [unknown], R. E. Kalman and J. E. Bertram: Control system analysis and design via the second method of Lyapunov: I. continuous-time systems, II. discrete-time systems. ASME J. Basic Engrg. 82 (1960), 371–393, 394–400. MR0157810
- New results in linear filtering and prediction theory, ASME J. Basic Engrg. 83 (1961), 95–108. MR0234760
- Non-linear observer design by transformation into a generalized observer canonical form, Internat. J. Control 46 (1987), 1915–1930. MR0924264
- Generalized Schwarz form and lattice-ladder realizations of digital filters, IEEE Trans. Circuits Systems 32 (1985), 1130–1139. Zbl0579.94024
- Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47–52. MR0713426
- Nonlinear observers with linearizable error dynamics, SIAM J. Control Optim. 23 (1985), 197–216. MR0777456
- An introduction to observers, IEEE Trans. Automat. Control 16 (1971), 596–602.
- Rotordynamics, Taylor & Francis, London 2005. Zbl1089.70001
- Digital Signal Processing, Prentice Hall, Englewood Cliffs, New Jersey 1975.
- A new proof of the Routh and Hurwitz criterion by the second method of Lyapunov with application to optimum transfer functions, IEEE Trans. Automat. Control 9 (1963), 319–322.
- Tellegen’s Theorem and Electrical Networks, MIT Press, Cambridge, Mass. 1970. MR0282747
- Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input, Automatica 29 (1993), 495–498. MR1211308
- The Theory of Sound, Dover Publications, New York 1945. Zbl0061.45904MR0016009
- Ein Verfahren zur Stabilitätsfrage bei Matrizen Eigenwertproblemen, Z. Angew. Math. Phys. 7 (1956), 473–500. Zbl0073.33901MR0083194
- The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego 1999.
- Dissipative dynamical systems – Part I: General theory, Arch. Rational Mechanics and Analysis 45 (1972), 321–351. MR0527462
- Observability canonical (phase-variable) form for non-linear time-variable systems, Internat. J. Control 15 (1984), 949–958. Zbl0546.93011MR0763769