Entropy on effect algebras with Riesz decomposition property II: MV-algebras

Antonio Di Nola; Anatolij Dvurečenskij; Marek Hyčko; Corrado Manara

Kybernetika (2005)

  • Volume: 41, Issue: 2, page [161]-176
  • ISSN: 0023-5954

Abstract

top
We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.

How to cite

top

Di Nola, Antonio, et al. "Entropy on effect algebras with Riesz decomposition property II: MV-algebras." Kybernetika 41.2 (2005): [161]-176. <http://eudml.org/doc/33747>.

@article{DiNola2005,
abstract = {We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.},
author = {Di Nola, Antonio, Dvurečenskij, Anatolij, Hyčko, Marek, Manara, Corrado},
journal = {Kybernetika},
keywords = {effect algebra; Riesz decomposition property; MV-algebra; state; entropy; effect algebra; Riesz decomposition property; MV-algebra; tribe; Loomis-Sikorski theorem; entropy generator theorem},
language = {eng},
number = {2},
pages = {[161]-176},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Entropy on effect algebras with Riesz decomposition property II: MV-algebras},
url = {http://eudml.org/doc/33747},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Di Nola, Antonio
AU - Dvurečenskij, Anatolij
AU - Hyčko, Marek
AU - Manara, Corrado
TI - Entropy on effect algebras with Riesz decomposition property II: MV-algebras
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 2
SP - [161]
EP - 176
AB - We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.
LA - eng
KW - effect algebra; Riesz decomposition property; MV-algebra; state; entropy; effect algebra; Riesz decomposition property; MV-algebra; tribe; Loomis-Sikorski theorem; entropy generator theorem
UR - http://eudml.org/doc/33747
ER -

References

top
  1. Butnariu D., Klement P., Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht 199 
  2. Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C., Entropy of effect algebras with the Riesz decomposition property I: Basic properties, Kybernetika 41 (2005), 143–160 MR2138765
  3. Nola A. Di, Dvurečenskij, A., Jakubík J., Good and bad infinitesimals, and states on pseudo MV-algebras, submitte 
  4. Dvurečenskij A., 10.1017/S1446788700001993, J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 Zbl0958.06006MR1738040DOI10.1017/S1446788700001993
  5. Dvurečenskij A., 10.1006/jmaa.2000.7409, J. Math. Anal. Appl. 259 (2001), 413–428 Zbl0992.03081MR1842068DOI10.1006/jmaa.2000.7409
  6. Dvurečenskij A., 10.1017/S1446788700003177, J. Austral. Math. Soc. 74 (2003), 121–143 MR1948263DOI10.1017/S1446788700003177
  7. Dvurečenskij A., Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte 
  8. Dvurečenskij A., Product effect algebras, Inter. J. Theor. Phys. 41 (2002), 1827–1839 Zbl1014.81004MR1944619
  9. Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 200 MR1861369
  10. Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford – London – New York – Paris 1963 Zbl0137.02001MR0171864
  11. Goodearl K. R., Partially Ordered Abelian Groups with Interpolation, (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 Zbl0589.06008MR0845783
  12. Mundici D., 10.1006/aama.1998.0631, Advan. Appl. Math. 22 (1999), 227–248 (1999) Zbl0926.06004MR1659410DOI10.1006/aama.1998.0631
  13. Riečan B., Kolmogorov–Sinaj entropy on MV-algebras, submitte 
  14. Riečan B., Mundici D., Probability on MV-algebras, In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 Zbl1017.28002MR1954631
  15. Riečan B., Neubrunn T., Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 199 MR1489521

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.