Entropy on effect algebras with the Riesz decomposition property I: Basic properties
Antonio Di Nola; Anatolij Dvurečenskij; Marek Hyčko; Corrado Manara
Kybernetika (2005)
- Volume: 41, Issue: 2, page [143]-160
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDi Nola, Antonio, et al. "Entropy on effect algebras with the Riesz decomposition property I: Basic properties." Kybernetika 41.2 (2005): [143]-160. <http://eudml.org/doc/33746>.
@article{DiNola2005,
abstract = {We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.},
author = {Di Nola, Antonio, Dvurečenskij, Anatolij, Hyčko, Marek, Manara, Corrado},
journal = {Kybernetika},
keywords = {effect algebra; Riesz decomposition property; MV-algebra; state; entropy; effect algebra; Riesz decomposition property; MV-algebra; state; entropy},
language = {eng},
number = {2},
pages = {[143]-160},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Entropy on effect algebras with the Riesz decomposition property I: Basic properties},
url = {http://eudml.org/doc/33746},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Di Nola, Antonio
AU - Dvurečenskij, Anatolij
AU - Hyčko, Marek
AU - Manara, Corrado
TI - Entropy on effect algebras with the Riesz decomposition property I: Basic properties
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 2
SP - [143]
EP - 160
AB - We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.
LA - eng
KW - effect algebra; Riesz decomposition property; MV-algebra; state; entropy; effect algebra; Riesz decomposition property; MV-algebra; state; entropy
UR - http://eudml.org/doc/33746
ER -
References
top- Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
- Chovanec F., States and observables on MV-algebras, Tatra Mt. Math. Publ. 3 (1993), 55–65 (1993) Zbl0799.03074MR1278519
- Cignoli R., D’Ottaviano I. M. L., Mundici D., Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht 2000 Zbl0937.06009MR1786097
- Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C., Entropy of effect algebras with the Riesz decomposition property II, MV-algebras. Kybernetika 41 (2005), 161–175 MR2138766
- Dvurečenskij A., 10.1017/S1446788700003177, J. Austral. Math. Soc. 74 (2003), 121–143 Zbl1033.03036MR1948263DOI10.1017/S1446788700003177
- Dvurečenskij A., Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte
- Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR1861369
- Foulis D. J., Bennett M. K., 10.1007/BF02283036, Found. Phys. 24 (1994), 1325–1346 (1994) MR1304942DOI10.1007/BF02283036
- Goodearl K. R., Partially Ordered Abelian Groups with Interpolation, (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 Zbl0589.06008MR0845783
- Greechie R. J., 10.1016/0097-3165(71)90015-X, J. Comb. Theory 10 (1971), 119–132 (1971) Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
- Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21–34 (1994) MR1290269
- Maličký P., Riečan B., On the entropy of dynamical systems, In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 (1986) MR0931138
- Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63 (1986) Zbl0597.46059MR0819173DOI10.1016/0022-1236(86)90015-7
- Mundici D., 10.1007/BF01053035, Studia Logica 55 (1995), 113–127 (1995) Zbl0836.03016MR1348840DOI10.1007/BF01053035
- Petrovičová J., On the entropy of dynamical systems in product MV algebras, Fuzzy Sets and Systems 121 (2001), 347–351 Zbl0983.37007
- Petrovičová J., 10.1007/s005000050080, Soft Computing 4 (2000), 41–44 Zbl1008.37004DOI10.1007/s005000050080
- Riečan B., Kolmogorov-Sinaj entropy on MV-algebras, submitte
- Riečan B., Mundici D., Probability on MV-algebras, In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 Zbl1017.28002MR1954631
- Riečan B., Neubrunn T., Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997 Zbl0916.28001MR1489521
- Ravindran K., On a Structure Theory of Effect Algebras, Ph.D. Thesis, Kansas State University, Manhattan 1996 MR2694228
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.