Entropy on effect algebras with the Riesz decomposition property I: Basic properties

Antonio Di Nola; Anatolij Dvurečenskij; Marek Hyčko; Corrado Manara

Kybernetika (2005)

  • Volume: 41, Issue: 2, page [143]-160
  • ISSN: 0023-5954

Abstract

top
We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.

How to cite

top

Di Nola, Antonio, et al. "Entropy on effect algebras with the Riesz decomposition property I: Basic properties." Kybernetika 41.2 (2005): [143]-160. <http://eudml.org/doc/33746>.

@article{DiNola2005,
abstract = {We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.},
author = {Di Nola, Antonio, Dvurečenskij, Anatolij, Hyčko, Marek, Manara, Corrado},
journal = {Kybernetika},
keywords = {effect algebra; Riesz decomposition property; MV-algebra; state; entropy; effect algebra; Riesz decomposition property; MV-algebra; state; entropy},
language = {eng},
number = {2},
pages = {[143]-160},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Entropy on effect algebras with the Riesz decomposition property I: Basic properties},
url = {http://eudml.org/doc/33746},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Di Nola, Antonio
AU - Dvurečenskij, Anatolij
AU - Hyčko, Marek
AU - Manara, Corrado
TI - Entropy on effect algebras with the Riesz decomposition property I: Basic properties
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 2
SP - [143]
EP - 160
AB - We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.
LA - eng
KW - effect algebra; Riesz decomposition property; MV-algebra; state; entropy; effect algebra; Riesz decomposition property; MV-algebra; state; entropy
UR - http://eudml.org/doc/33746
ER -

References

top
  1. Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  2. Chovanec F., States and observables on MV-algebras, Tatra Mt. Math. Publ. 3 (1993), 55–65 (1993) Zbl0799.03074MR1278519
  3. Cignoli R., D’Ottaviano I. M. L., Mundici D., Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht 2000 Zbl0937.06009MR1786097
  4. Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C., Entropy of effect algebras with the Riesz decomposition property II, MV-algebras. Kybernetika 41 (2005), 161–175 MR2138766
  5. Dvurečenskij A., 10.1017/S1446788700003177, J. Austral. Math. Soc. 74 (2003), 121–143 Zbl1033.03036MR1948263DOI10.1017/S1446788700003177
  6. Dvurečenskij A., Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte 
  7. Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR1861369
  8. Foulis D. J., Bennett M. K., 10.1007/BF02283036, Found. Phys. 24 (1994), 1325–1346 (1994) MR1304942DOI10.1007/BF02283036
  9. Goodearl K. R., Partially Ordered Abelian Groups with Interpolation, (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 Zbl0589.06008MR0845783
  10. Greechie R. J., 10.1016/0097-3165(71)90015-X, J. Comb. Theory 10 (1971), 119–132 (1971) Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
  11. Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21–34 (1994) MR1290269
  12. Maličký P., Riečan B., On the entropy of dynamical systems, In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 (1986) MR0931138
  13. Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63 (1986) Zbl0597.46059MR0819173DOI10.1016/0022-1236(86)90015-7
  14. Mundici D., 10.1007/BF01053035, Studia Logica 55 (1995), 113–127 (1995) Zbl0836.03016MR1348840DOI10.1007/BF01053035
  15. Petrovičová J., On the entropy of dynamical systems in product MV algebras, Fuzzy Sets and Systems 121 (2001), 347–351 Zbl0983.37007
  16. Petrovičová J., 10.1007/s005000050080, Soft Computing 4 (2000), 41–44 Zbl1008.37004DOI10.1007/s005000050080
  17. Riečan B., Kolmogorov-Sinaj entropy on MV-algebras, submitte 
  18. Riečan B., Mundici D., Probability on MV-algebras, In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 Zbl1017.28002MR1954631
  19. Riečan B., Neubrunn T., Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997 Zbl0916.28001MR1489521
  20. Ravindran K., On a Structure Theory of Effect Algebras, Ph.D. Thesis, Kansas State University, Manhattan 1996 MR2694228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.