Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
Kybernetika (2007)
- Volume: 43, Issue: 6, page 797-806
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHiraoka, Yasuaki. "Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems." Kybernetika 43.6 (2007): 797-806. <http://eudml.org/doc/33897>.
@article{Hiraoka2007,
abstract = {We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.},
author = {Hiraoka, Yasuaki},
journal = {Kybernetika},
keywords = {rigorous numerics; exponential dichotomy; homoclinic orbits; numerical examples; exponential dichotomy; homoclinic orbits; reversible dynamical systems; Melnikov functions; algorithm},
language = {eng},
number = {6},
pages = {797-806},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems},
url = {http://eudml.org/doc/33897},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Hiraoka, Yasuaki
TI - Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 6
SP - 797
EP - 806
AB - We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.
LA - eng
KW - rigorous numerics; exponential dichotomy; homoclinic orbits; numerical examples; exponential dichotomy; homoclinic orbits; reversible dynamical systems; Melnikov functions; algorithm
UR - http://eudml.org/doc/33897
ER -
References
top- Chow S.-N., Deng, B., Fiedler B., 10.1007/BF01057418, J. Dyn. Differential Equations 2 (1990), 177–244 (1990) Zbl0703.34050MR1050642DOI10.1007/BF01057418
- Coddington E. A., Levinson L., Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955 Zbl0064.33002MR0069338
- Coppel W. A., Dichotomies in Stability Theory, (Lecture Notes in Mathematics 629.), Springer-Verlag, Berlin 1978 Zbl0376.34001MR0481196
- Deng B., 10.1016/0022-0396(89)90100-9, J. Differential Equations 79 (1989), 189–231 (1989) MR1000687DOI10.1016/0022-0396(89)90100-9
- Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer–Verlag, Berlin 1983 Zbl0515.34001MR0709768
- Hiraoka Y., in preparatio
- Iooss G., Pérouème M. C., 10.1006/jdeq.1993.1022, J. Differential Equations 102 (1993), 62–88 (1993) Zbl0792.34044MR1209977DOI10.1006/jdeq.1993.1022
- Kapitula T., 10.1137/S0036141097327963, SIAM J. Math. Anal. 30 (1999), 273–297 (1999) Zbl0921.34009MR1664760DOI10.1137/S0036141097327963
- Kokubu H., 10.1007/BF03167912, Japan J. Appl. Math. 5 (1988), 455–501 (1988) MR0965875DOI10.1007/BF03167912
- Kisaka M., Kokubu, H., Oka H., 10.1007/BF01053164, J. Dyn. Differential Equations 5 (1993), 305–357 (1993) Zbl0784.34038MR1223451DOI10.1007/BF01053164
- Lohner R. J., Einschliessung der Lösung gewonhnlicher Anfangs- and Randwertaufgaben und Anwendungen, Thesis, Universität Karlsruhe (TH) 1988
- Melnikov V. K., On the stability of center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963) , 1–57 (1963) MR0156048
- Oishi S., Research Institute for Mathematical Sciences Kôkyûroku, 928 (1995), 14–1
- Vanderbauwhede A., Fiedler B., 10.1007/BF00946632, Z. Angew. Math. Phys. 43 (1992), 292–318 (1992) Zbl0762.34023MR1162729DOI10.1007/BF00946632
- Wilczak D., Zgliczyński P., 10.1007/s00220-002-0709-0, Comm. Math. Phys. 234 (2003), 37–75 Zbl1055.70005MR1961956DOI10.1007/s00220-002-0709-0
- Yamamoto N., 10.1137/S0036142996304498, SIAM J. Numer. Anal. 35 (1998), 2004–2013 (1998) Zbl0972.65084MR1639986DOI10.1137/S0036142996304498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.