Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems

Yasuaki Hiraoka

Kybernetika (2007)

  • Volume: 43, Issue: 6, page 797-806
  • ISSN: 0023-5954

Abstract

top
We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.

How to cite

top

Hiraoka, Yasuaki. "Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems." Kybernetika 43.6 (2007): 797-806. <http://eudml.org/doc/33897>.

@article{Hiraoka2007,
abstract = {We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.},
author = {Hiraoka, Yasuaki},
journal = {Kybernetika},
keywords = {rigorous numerics; exponential dichotomy; homoclinic orbits; numerical examples; exponential dichotomy; homoclinic orbits; reversible dynamical systems; Melnikov functions; algorithm},
language = {eng},
number = {6},
pages = {797-806},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems},
url = {http://eudml.org/doc/33897},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Hiraoka, Yasuaki
TI - Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 6
SP - 797
EP - 806
AB - We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.
LA - eng
KW - rigorous numerics; exponential dichotomy; homoclinic orbits; numerical examples; exponential dichotomy; homoclinic orbits; reversible dynamical systems; Melnikov functions; algorithm
UR - http://eudml.org/doc/33897
ER -

References

top
  1. Chow S.-N., Deng, B., Fiedler B., 10.1007/BF01057418, J. Dyn. Differential Equations 2 (1990), 177–244 (1990) Zbl0703.34050MR1050642DOI10.1007/BF01057418
  2. Coddington E. A., Levinson L., Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955 Zbl0064.33002MR0069338
  3. Coppel W. A., Dichotomies in Stability Theory, (Lecture Notes in Mathematics 629.), Springer-Verlag, Berlin 1978 Zbl0376.34001MR0481196
  4. Deng B., 10.1016/0022-0396(89)90100-9, J. Differential Equations 79 (1989), 189–231 (1989) MR1000687DOI10.1016/0022-0396(89)90100-9
  5. Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer–Verlag, Berlin 1983 Zbl0515.34001MR0709768
  6. Hiraoka Y., in preparatio 
  7. Iooss G., Pérouème M. C., 10.1006/jdeq.1993.1022, J. Differential Equations 102 (1993), 62–88 (1993) Zbl0792.34044MR1209977DOI10.1006/jdeq.1993.1022
  8. Kapitula T., 10.1137/S0036141097327963, SIAM J. Math. Anal. 30 (1999), 273–297 (1999) Zbl0921.34009MR1664760DOI10.1137/S0036141097327963
  9. Kokubu H., 10.1007/BF03167912, Japan J. Appl. Math. 5 (1988), 455–501 (1988) MR0965875DOI10.1007/BF03167912
  10. Kisaka M., Kokubu, H., Oka H., 10.1007/BF01053164, J. Dyn. Differential Equations 5 (1993), 305–357 (1993) Zbl0784.34038MR1223451DOI10.1007/BF01053164
  11. Lohner R. J., Einschliessung der Lösung gewonhnlicher Anfangs- and Randwertaufgaben und Anwendungen, Thesis, Universität Karlsruhe (TH) 1988 
  12. Melnikov V. K., On the stability of center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963) , 1–57 (1963) MR0156048
  13. Oishi S., Research Institute for Mathematical Sciences Kôkyûroku, 928 (1995), 14–1 
  14. Vanderbauwhede A., Fiedler B., 10.1007/BF00946632, Z. Angew. Math. Phys. 43 (1992), 292–318 (1992) Zbl0762.34023MR1162729DOI10.1007/BF00946632
  15. Wilczak D., Zgliczyński P., 10.1007/s00220-002-0709-0, Comm. Math. Phys. 234 (2003), 37–75 Zbl1055.70005MR1961956DOI10.1007/s00220-002-0709-0
  16. Yamamoto N., 10.1137/S0036142996304498, SIAM J. Numer. Anal. 35 (1998), 2004–2013 (1998) Zbl0972.65084MR1639986DOI10.1137/S0036142996304498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.