Page 1 Next

Displaying 1 – 20 of 39

Showing per page

Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems

Massimiliano Berti, Philippe Bolle (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincaré-Melnikov function.

Generic diffeomorphisms on compact surfaces

Flavio Abdenur, Christian Bonatti, Sylvain Crovisier, Lorenzo J. Díaz (2005)

Fundamenta Mathematicae

We discuss the remaining obstacles to prove Smale's conjecture about the C¹-density of hyperbolicity among surface diffeomorphisms. Using a C¹-generic approach, we classify the possible pathologies that may obstruct the C¹-density of hyperbolicity. We show that there are essentially two types of obstruction: (i) persistence of infinitely many hyperbolic homoclinic classes and (ii) existence of a single homoclinic class which robustly exhibits homoclinic tangencies. In the course of our discussion,...

Heterodimensional cycles, partial hyperbolicity and limit dynamics

L. J. Diaz, J. Rocha (2002)

Fundamenta Mathematicae

We study one-parameter families of diffeomorphisms unfolding heterodimensional cycles (i.e. cycles containing periodic points of different indices). We construct an open set of such arcs such that, for a subset of the parameter space with positive relative density at the bifurcation value, the resulting nonwandering set is the disjoint union of two hyperbolic basic sets of different indices and a strong partially hyperbolic set which is robustly transitive. The dynamics of the diffeomorphisms we...

Currently displaying 1 – 20 of 39

Page 1 Next