Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs
Hitoshi Imai; Naoyuki Ishimura; Hideo Sakaguchi
Kybernetika (2007)
- Volume: 43, Issue: 6, page 807-815
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topImai, Hitoshi, Ishimura, Naoyuki, and Sakaguchi, Hideo. "Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs." Kybernetika 43.6 (2007): 807-815. <http://eudml.org/doc/33898>.
@article{Imai2007,
abstract = {We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.},
author = {Imai, Hitoshi, Ishimura, Naoyuki, Sakaguchi, Hideo},
journal = {Kybernetika},
keywords = {transaction costs; nonlinear partial differential equation; numerical computation},
language = {eng},
number = {6},
pages = {807-815},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs},
url = {http://eudml.org/doc/33898},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Imai, Hitoshi
AU - Ishimura, Naoyuki
AU - Sakaguchi, Hideo
TI - Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 6
SP - 807
EP - 815
AB - We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.
LA - eng
KW - transaction costs; nonlinear partial differential equation; numerical computation
UR - http://eudml.org/doc/33898
ER -
References
top- Black F., Scholes M., 10.1086/260062, J. Political Economy 81 (1973), 637–659 (1973) Zbl1092.91524DOI10.1086/260062
- Boyle P. P., Vorst T., 10.1111/j.1540-6261.1992.tb03986.x, J. Finance 47 (1992), 271–293 (1992) DOI10.1111/j.1540-6261.1992.tb03986.x
- Dewynne J. N., Whalley A. E., Wilmott P., Path-dependent options and transaction costs, In: Mathematical Models in Finance (S. D. Howison, F. P. Kelly, and P. Wilmott, eds.), Chapman and Hall, London 1995, pp. 67–79 (1995) Zbl0854.90009
- Hoggard T., Whalley A. E., Wilmott P., Hedging option portfolios in the presence of transaction costs, Adv. in Futures and Options Res. 7 (1994), 21–35 (1994)
- Hull J., Options, Futures, and Other Derivatives, Fourth edition. Prentice-Hall, New Jersey 2000 Zbl1087.91025
- Imai H., Some methods for removing singularities and infinity in numerical simulations, In: Proc. Third Polish–Japanese Days on Mathematical Approach to Nonlinear Phenomena: Modeling, Analysis and Simulations (T. Aiki, N. Kenmochi, M. Niezgódka and M. Ôtani, eds.), Gakuto, Tokyo 2005, pp. 103–118 MR2232832
- Imai H., Ishimura N., Mottate, I., Nakamura M. A., 10.1007/s10690-007-9047-8, Asia–Pacific Financial Markets 13 (2007), 315–326 DOI10.1007/s10690-007-9047-8
- Ishimura N., Remarks on the nonlinear partial differential equations of Black–Scholes type with transaction costs, preprint. Submitted
- Jandačka M., Ševčovič D., 10.1155/JAM.2005.235, J. Appl. Math. 3 (2005), 235–258 Zbl1128.91025MR2201973DOI10.1155/JAM.2005.235
- Kwok Y., Mathematical Models of Financial Derivatives, Springer, New York 1998 Zbl1146.91002MR1645143
- Leland H. E., 10.1111/j.1540-6261.1985.tb02383.x, J. Finance 40 (1985), 1283–1301 (1985) DOI10.1111/j.1540-6261.1985.tb02383.x
- Merton R. C., 10.2307/3003143, Bell J. Econ. Manag. Sci. 4 (1973), 141–183 (1973) MR0496534DOI10.2307/3003143
- Wilmott P., Paul Wilmott on Quantitative Finance, Vol, I, II. Wiley, New York 2000
- Wilmott P., Howison, S., Dewynne J., The Mathematics of Financial Derivatives, Cambridge University Press, Cambridge 1995 Zbl0842.90008MR1357666
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.