Note to the Lagrange stability of excited pendulum type equations

Ján Andres; Staněk, Svatoslav

Mathematica Slovaca (1993)

  • Volume: 43, Issue: 5, page 617-630
  • ISSN: 0139-9918

How to cite

top

Andres, Ján, and Staněk, Svatoslav. "Note to the Lagrange stability of excited pendulum type equations." Mathematica Slovaca 43.5 (1993): 617-630. <http://eudml.org/doc/34370>.

@article{Andres1993,
author = {Andres, Ján, Staněk, Svatoslav},
journal = {Mathematica Slovaca},
keywords = {higher-order pendulum-type equations; Lagrange stability; problem of Barbashin},
language = {eng},
number = {5},
pages = {617-630},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Note to the Lagrange stability of excited pendulum type equations},
url = {http://eudml.org/doc/34370},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Andres, Ján
AU - Staněk, Svatoslav
TI - Note to the Lagrange stability of excited pendulum type equations
JO - Mathematica Slovaca
PY - 1993
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 43
IS - 5
SP - 617
EP - 630
LA - eng
KW - higher-order pendulum-type equations; Lagrange stability; problem of Barbashin
UR - http://eudml.org/doc/34370
ER -

References

top
  1. ANDRES J., Note to the asymptotic behaviour of solutions of damped pendulum equations under forcing, J. Nonlin. Anal. T.M.A. 18 (1992), 705-712. (1992) Zbl0763.34038MR1160114
  2. ANDRES J., Lagrange stability of higher-order analogy of damped pendulum equations, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 106, Phys. 31 (1992), 154-159. (1992) Zbl0823.70018
  3. ANDRES J., Problem of Barbashin in the case of forcing, In: Qualit. Theory of Differential Equations (Szeged, 1988). Colloq. Math. Soc. János Bolyai 53, North-Holland, Amsterdam-New York, 1989, pp. 9-16. (1988) MR1062630
  4. ANDRES J.-VLČEK V., Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing, Rend. 1st. Mat. Univ. Trieste 21 (1989), 128-143. (1989) Zbl0753.34020MR1142529
  5. BARBASHIN V. A.-TABUEVA E. A., Dynamical Systems with Cylindrical Phase Space, (Russian), Nauka, Moscow, 1964. (1964) 
  6. CHENCINER A., Systèmes dynamiques differentiables, In: Encyclopedia Universalis, Universalia, Paris, 1978. (1978) 
  7. COPPEL W. A., Stability and Asymptotic Behavior of Differential Equations, D.C Heath, Boston, 1965. (1965) Zbl0154.09301MR0190463
  8. D'HUMIÈRES D.-BEASLEY M. R.-HUBERMAN B. A.-LIBCHABER A., Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A 26 (1982), 3483-3496. (1982) 
  9. GREBOGI, C-NUSSE H. E.-OTT E.-YORKE J. A., Basic sets: sets that determine the dimension of basin boundaries, In: Lecture Notes in Math. 1342, Springer, New York-Berlin, 1988, pp. 220-250. (1988) MR0970558
  10. GUCKENHEIMER J.-HOLMES P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Appl. Math. Sci. 42, Springer, New York-Berlin, 1984. (1984) MR1139515
  11. LEONOV G. A., On a problem of Barbashin, Vestnik Leningrad Univ. Math. 13 (1981), 293-297. (1981) MR1279993
  12. MAWHIN J., Periodic oscillations of forced pendulum-like equations, In: Lecture Notes in Math. 964, Springer, New York-Berlin, 1982. (1982) Zbl0517.34029MR0693131
  13. MAWHIN J., The forced pendulum: A paradigm for nonlinear analysis and dynamical systems, Exposition. Math. 6 (1988), 271-287. (1988) Zbl0668.70028MR0949785
  14. MOSER J., Stable and Random Motions in Dynamical Systems, Princeton Univ. Press and Univ. of Tokyo Press, Princeton, 1973. (1973) Zbl0271.70009MR0442980
  15. ORTEGA R., A counterexample for the damped pendulum equation, Bull. Roy. Acad. Sci. Belgique 73 (1987), 405-409. (1987) Zbl0679.70022MR1026970
  16. ORTEGA R., Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., (To appear). Zbl0677.34042MR1087224
  17. PALMER K. J., Exponential dichotomies and transversal homoclinic points, J. Differential Equations 55 (1984), 225-256. (1984) Zbl0508.58035MR0764125
  18. PARK B. S., GREBOGI C., OTT E., YORKE J. A., Scaling of fractal basin boundaries near intermittency transitions to chaos, Phys. Rev. A 40 (1989), 1576-1581. (1989) MR1009327
  19. POPOV V. M., Hyperstability of Control Systems, Springer, Berlin, 1973. (1973) Zbl0276.93033MR0387749
  20. SANDERS J., VERHULST F., Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci. 59, Springer, New York-Berlin, 1985. (1985) Zbl0586.34040MR0810620
  21. SĘDZIWY S., Boundedness of solutions of an n-th order nonlinear differential equation, Atti Accad. Naz. Lincei 64 (1978), 363-366. (1978) Zbl0421.34040MR0551517
  22. SEIFERT G., The asymptotic behaviour of solutions of pendulum type equations, Ann. of Math. 69 (1959), 75-87. (1959) MR0100703
  23. SHAHGIL'DJAN V. V., LJAHOVKIN A. A., Systems of Phase-Shift Automatic Frequency, (Russian), Control. Svjaz, Moscow, 1972. (1972) 
  24. SWICK K. E., Asymptotic behavior of the solutions of certain third order differential equations, SIAM J. Appl. Math. 19 (1970), 96-102. (1970) Zbl0212.11403MR0267212
  25. TRICOMI F., Integrazione di un'equazione differenziale presentatasi in elettrotecnia, Ann. R. Sc. Norm. Sup. di Pisa 2 (1933), 1-20. (1933) MR1556692
  26. VORÁČEK J., On the solution of certain non-linear differential equations of the third order, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 33 (1971), 147-156. (1971) Zbl0287.34033MR0320455
  27. YOU J., Invariant tori and Lagrange stability of pendulum-type equations, J. Differential Equations 85 (1990), 54-65. (1990) Zbl0702.34047MR1052327

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.