Equivariant cohomology with local coefficients

Marek Golasiński

Mathematica Slovaca (1997)

  • Volume: 47, Issue: 5, page 575-586
  • ISSN: 0232-0525

How to cite

top

Golasiński, Marek. "Equivariant cohomology with local coefficients." Mathematica Slovaca 47.5 (1997): 575-586. <http://eudml.org/doc/34467>.

@article{Golasiński1997,
author = {Golasiński, Marek},
journal = {Mathematica Slovaca},
keywords = {-cohomology group; -space; -space; local contravariant coefficient system; locally compact group},
language = {eng},
number = {5},
pages = {575-586},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Equivariant cohomology with local coefficients},
url = {http://eudml.org/doc/34467},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Golasiński, Marek
TI - Equivariant cohomology with local coefficients
JO - Mathematica Slovaca
PY - 1997
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 47
IS - 5
SP - 575
EP - 586
LA - eng
KW - -cohomology group; -space; -space; local contravariant coefficient system; locally compact group
UR - http://eudml.org/doc/34467
ER -

References

top
  1. tom DIECK T., Transformation Groups, Walter de Gruyter, Berlin, 1987. (1987) Zbl0611.57002MR0889050
  2. ELMENDORF A. D., Systems of fixed point set, Trans. Amer. Math. Soc. 277 (1983), 275-284. (1983) MR0690052
  3. GOLASIŃSKI M., An equivariant dual J. H. C. Whitehead Theorem, In: Colloq. Math. Soc. János Bolyai 55, North-Нolland, Amsterdam, 1989, pp. 283-288. (1989) MR1244370
  4. ILLMAN S., Equivariant Algebraic Topology Thesis, Pгinceton University, Princeton, N. J., 1972. (1972) MR2622205
  5. ILLMAN S., Equivariant singular homology and cohomology, Mem. Amer. Math. Soc. 156 (1975). (1975) Zbl0297.55003MR0375286
  6. MATUMOTO T., On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374. (1971) Zbl0232.57031MR0345103
  7. MATUMOTO T., Equivariant cohomology theories on G-CW complexes, Osaka J. Math. 10 (1973), 51-68. (1973) Zbl0272.55013MR0343259
  8. MATUMOTO T., A complement to the theory of G-CW complexes, Japan J. Math. 10 (1984), 353-374. (1984) Zbl0594.57021MR0884424
  9. MOERDIJK I.-SVENSSON J. A., A Shapiro lemma for diagrams of spaces with applications to equivariant topology, Compositio Math. 96 (1995), 249-282. (1995) Zbl0853.55005MR1327146
  10. MOLLER J. M., On equivariant function spaces, Pacific J. Math. 142 (1990), 103-119. (1990) MR1038731
  11. PIACENZA R. J., Homotopy theory of diagrams and CW-complexes over a category, Canad. J. Math. 43 (1991), 814-824. (1991) Zbl0758.55015MR1127031
  12. QUILLEN D. G., Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967. (1967) Zbl0168.20903MR0223432
  13. SHITANDA Y., Abstract homotopy theory and homotopy theory of functor category, Hiroshima Math. J. 19 (1989), 477-497. (1989) Zbl0701.18010MR1035138
  14. WANER S., Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258 (1980), 351-368. (1980) Zbl0444.55010MR0558178
  15. WILSON S. J., Equivariant homology theories on G-complexes, Trans. Amer. Math. Soc. 212 (1975), 155-171. (1975) MR0377859
  16. WHITEHEAD G. W., Elements of Homotopy Theory, Springer-Verlag, Berlin, 1978. (1978) Zbl0406.55001MR0516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.