Equivariant cohomology with local coefficients
Mathematica Slovaca (1997)
- Volume: 47, Issue: 5, page 575-586
- ISSN: 0139-9918
Access Full Article
topHow to cite
topGolasiński, Marek. "Equivariant cohomology with local coefficients." Mathematica Slovaca 47.5 (1997): 575-586. <http://eudml.org/doc/34467>.
@article{Golasiński1997,
author = {Golasiński, Marek},
journal = {Mathematica Slovaca},
keywords = {-cohomology group; -space; -space; local contravariant coefficient system; locally compact group},
language = {eng},
number = {5},
pages = {575-586},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Equivariant cohomology with local coefficients},
url = {http://eudml.org/doc/34467},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Golasiński, Marek
TI - Equivariant cohomology with local coefficients
JO - Mathematica Slovaca
PY - 1997
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 47
IS - 5
SP - 575
EP - 586
LA - eng
KW - -cohomology group; -space; -space; local contravariant coefficient system; locally compact group
UR - http://eudml.org/doc/34467
ER -
References
top- tom DIECK T., Transformation Groups, Walter de Gruyter, Berlin, 1987. (1987) Zbl0611.57002MR0889050
- ELMENDORF A. D., Systems of fixed point set, Trans. Amer. Math. Soc. 277 (1983), 275-284. (1983) MR0690052
- GOLASIŃSKI M., An equivariant dual J. H. C. Whitehead Theorem, In: Colloq. Math. Soc. János Bolyai 55, North-Нolland, Amsterdam, 1989, pp. 283-288. (1989) MR1244370
- ILLMAN S., Equivariant Algebraic Topology Thesis, Pгinceton University, Princeton, N. J., 1972. (1972) MR2622205
- ILLMAN S., Equivariant singular homology and cohomology, Mem. Amer. Math. Soc. 156 (1975). (1975) Zbl0297.55003MR0375286
- MATUMOTO T., On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374. (1971) Zbl0232.57031MR0345103
- MATUMOTO T., Equivariant cohomology theories on G-CW complexes, Osaka J. Math. 10 (1973), 51-68. (1973) Zbl0272.55013MR0343259
- MATUMOTO T., A complement to the theory of G-CW complexes, Japan J. Math. 10 (1984), 353-374. (1984) Zbl0594.57021MR0884424
- MOERDIJK I.-SVENSSON J. A., A Shapiro lemma for diagrams of spaces with applications to equivariant topology, Compositio Math. 96 (1995), 249-282. (1995) Zbl0853.55005MR1327146
- MOLLER J. M., On equivariant function spaces, Pacific J. Math. 142 (1990), 103-119. (1990) MR1038731
- PIACENZA R. J., Homotopy theory of diagrams and CW-complexes over a category, Canad. J. Math. 43 (1991), 814-824. (1991) Zbl0758.55015MR1127031
- QUILLEN D. G., Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967. (1967) Zbl0168.20903MR0223432
- SHITANDA Y., Abstract homotopy theory and homotopy theory of functor category, Hiroshima Math. J. 19 (1989), 477-497. (1989) Zbl0701.18010MR1035138
- WANER S., Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258 (1980), 351-368. (1980) Zbl0444.55010MR0558178
- WILSON S. J., Equivariant homology theories on G-complexes, Trans. Amer. Math. Soc. 212 (1975), 155-171. (1975) MR0377859
- WHITEHEAD G. W., Elements of Homotopy Theory, Springer-Verlag, Berlin, 1978. (1978) Zbl0406.55001MR0516508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.