On a cancellation rule for subdirect products of lattice ordered groups and of GMV -algebras

Ján Jakubík

Mathematica Slovaca (2007)

  • Volume: 57, Issue: 3, page [201]-210
  • ISSN: 0232-0525

How to cite

top

Jakubík, Ján. "On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname{GMV}$-algebras." Mathematica Slovaca 57.3 (2007): [201]-210. <http://eudml.org/doc/34640>.

@article{Jakubík2007,
author = {Jakubík, Ján},
journal = {Mathematica Slovaca},
keywords = {lattice-ordered group; -algebra; subdirect product; cancellation rule},
language = {eng},
number = {3},
pages = {[201]-210},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname\{GMV\}$-algebras},
url = {http://eudml.org/doc/34640},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Jakubík, Ján
TI - On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname{GMV}$-algebras
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 3
SP - [201]
EP - 210
LA - eng
KW - lattice-ordered group; -algebra; subdirect product; cancellation rule
UR - http://eudml.org/doc/34640
ER -

References

top
  1. APPLESON R. R.-LOVÁSZ L., A characterization of cancellable k-ary structures, Period. Math. Hungar. 6 (1975), 17-19. (1975) Zbl0306.08001MR0373995
  2. BIRKHOFF G., Lattice Theory, (Зrd ed.) Amer. Math. Soc, Providence, RI, 1967. (1967) Zbl0153.02501MR0227053
  3. CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. PubL, Dordrecht, 2000. Zbl0937.06009MR1786097
  4. DVUREČENSKIJ A., Pseudo MV-algebras are intervals of i-groups, J. Austral. Math. Soc. 72 (2002), 427-445. MR1902211
  5. DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. PubL, Dordrecht, 2000. Zbl0987.81005MR1861369
  6. GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras: a noncommutative extension of MV-algebras, In: The Proceedings of the Fourth International Sупiposium on Economic Informatics, INFOREC, Bucharest, 6 9 Maу, Romania, 1999, pp. 961-968. (1999) Zbl0985.06007MR1730100
  7. GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  8. JAKUBÍK J., Subdirect product decompositions of MV-algebras, Czechoslovak Math. J. 49 (1999), 163-173. (1999) Zbl0951.06012MR1676813
  9. JAKUBÍK J., Isomorphisms of direct products of lattice ordered groups, Discuss. Math. Gen. Algebra Appl. 24 (2004), 43-52. Zbl1068.06017MR2117674
  10. JAKUBÍK J., Banaschewski's theorem for generalized MV-algebras, (To appear). Zbl1174.06318
  11. JAKUBÍK J.-CSONTÓOVÁ M., Convex isomorphism of directed multilattices, Math. Bohem. 118 (1993), 359-379. (1993) MR1251882
  12. JAKUBÍK J.-CSONTÓOVÁ M., Cancellation rule for internal direct product decompositions of connected partially ordered sets, Math. Bohem. 125 (2000), 115-122. MR1752083
  13. JAKUBÍK J.-LIHOVÁ J., On the cancellation rule for disconnected partially ordered sets, Math. Slovaca 54 (2004), 215-223. MR2076357
  14. JAKUBÍKOVÁ-STUDENOVSKÁ D., On a cancellation law for monounary algebras, Math. Bohem. 128 (2003), 79-90. Zbl1014.08006MR1974547
  15. MCKENZIE R., Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971), 59-101. (1971) Zbl0228.08002MR0280430
  16. McKENZIE R.-McNULTY G.-TAYLOR W., Algebras, Lattices, Varieties, Vol. 1, Wadsworth & Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole Advance B oks & Softwarе, Montеrey, California, 1987. (1987) MR0883644
  17. LOVÁSZ L., On the cancellation law among finite relational structures, Period. Math Hungar. 1 (1979), 145-156. (1979) MR0284391
  18. PLOŠCICA M.-ZELINA M., Cancellation among finite unary algebras, Discrеtе Math 159 (1996), 191-198. (1996) Zbl0859.08003MR1415293
  19. RACHŮNEK J., A non-commutative generalizatгon of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.