On a cancellation rule for subdirect products of lattice ordered groups and of -algebras
Mathematica Slovaca (2007)
- Volume: 57, Issue: 3, page [201]-210
- ISSN: 0139-9918
Access Full Article
topHow to cite
topJakubík, Ján. "On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname{GMV}$-algebras." Mathematica Slovaca 57.3 (2007): [201]-210. <http://eudml.org/doc/34640>.
@article{Jakubík2007,
author = {Jakubík, Ján},
journal = {Mathematica Slovaca},
keywords = {lattice-ordered group; -algebra; subdirect product; cancellation rule},
language = {eng},
number = {3},
pages = {[201]-210},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname\{GMV\}$-algebras},
url = {http://eudml.org/doc/34640},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Jakubík, Ján
TI - On a cancellation rule for subdirect products of lattice ordered groups and of $\operatorname{GMV}$-algebras
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 3
SP - [201]
EP - 210
LA - eng
KW - lattice-ordered group; -algebra; subdirect product; cancellation rule
UR - http://eudml.org/doc/34640
ER -
References
top- APPLESON R. R.-LOVÁSZ L., A characterization of cancellable k-ary structures, Period. Math. Hungar. 6 (1975), 17-19. (1975) Zbl0306.08001MR0373995
- BIRKHOFF G., Lattice Theory, (Зrd ed.) Amer. Math. Soc, Providence, RI, 1967. (1967) Zbl0153.02501MR0227053
- CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. PubL, Dordrecht, 2000. Zbl0937.06009MR1786097
- DVUREČENSKIJ A., Pseudo MV-algebras are intervals of i-groups, J. Austral. Math. Soc. 72 (2002), 427-445. MR1902211
- DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. PubL, Dordrecht, 2000. Zbl0987.81005MR1861369
- GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras: a noncommutative extension of MV-algebras, In: The Proceedings of the Fourth International Sупiposium on Economic Informatics, INFOREC, Bucharest, 6 9 Maу, Romania, 1999, pp. 961-968. (1999) Zbl0985.06007MR1730100
- GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
- JAKUBÍK J., Subdirect product decompositions of MV-algebras, Czechoslovak Math. J. 49 (1999), 163-173. (1999) Zbl0951.06012MR1676813
- JAKUBÍK J., Isomorphisms of direct products of lattice ordered groups, Discuss. Math. Gen. Algebra Appl. 24 (2004), 43-52. Zbl1068.06017MR2117674
- JAKUBÍK J., Banaschewski's theorem for generalized MV-algebras, (To appear). Zbl1174.06318
- JAKUBÍK J.-CSONTÓOVÁ M., Convex isomorphism of directed multilattices, Math. Bohem. 118 (1993), 359-379. (1993) MR1251882
- JAKUBÍK J.-CSONTÓOVÁ M., Cancellation rule for internal direct product decompositions of connected partially ordered sets, Math. Bohem. 125 (2000), 115-122. MR1752083
- JAKUBÍK J.-LIHOVÁ J., On the cancellation rule for disconnected partially ordered sets, Math. Slovaca 54 (2004), 215-223. MR2076357
- JAKUBÍKOVÁ-STUDENOVSKÁ D., On a cancellation law for monounary algebras, Math. Bohem. 128 (2003), 79-90. Zbl1014.08006MR1974547
- MCKENZIE R., Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971), 59-101. (1971) Zbl0228.08002MR0280430
- McKENZIE R.-McNULTY G.-TAYLOR W., Algebras, Lattices, Varieties, Vol. 1, Wadsworth & Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole Advance B oks & Softwarе, Montеrey, California, 1987. (1987) MR0883644
- LOVÁSZ L., On the cancellation law among finite relational structures, Period. Math Hungar. 1 (1979), 145-156. (1979) MR0284391
- PLOŠCICA M.-ZELINA M., Cancellation among finite unary algebras, Discrеtе Math 159 (1996), 191-198. (1996) Zbl0859.08003MR1415293
- RACHŮNEK J., A non-commutative generalizatгon of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.