Isomorphisms of direct products of lattice-ordered groups

Ján Jakubík

Discussiones Mathematicae - General Algebra and Applications (2004)

  • Volume: 24, Issue: 1, page 43-52
  • ISSN: 1509-9415

Abstract

top
In this paper we investigate sufficient conditions for the validity of certain implications concerning direct products of lattice-ordered groups.

How to cite

top

Ján Jakubík. "Isomorphisms of direct products of lattice-ordered groups." Discussiones Mathematicae - General Algebra and Applications 24.1 (2004): 43-52. <http://eudml.org/doc/287643>.

@article{JánJakubík2004,
abstract = {In this paper we investigate sufficient conditions for the validity of certain implications concerning direct products of lattice-ordered groups.},
author = {Ján Jakubík},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {Lattice-ordered group; direct product; Specker lattice-ordered group; orthogonal σ-completeness; lattice-ordered group; orthogonal -completeness},
language = {eng},
number = {1},
pages = {43-52},
title = {Isomorphisms of direct products of lattice-ordered groups},
url = {http://eudml.org/doc/287643},
volume = {24},
year = {2004},
}

TY - JOUR
AU - Ján Jakubík
TI - Isomorphisms of direct products of lattice-ordered groups
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2004
VL - 24
IS - 1
SP - 43
EP - 52
AB - In this paper we investigate sufficient conditions for the validity of certain implications concerning direct products of lattice-ordered groups.
LA - eng
KW - Lattice-ordered group; direct product; Specker lattice-ordered group; orthogonal σ-completeness; lattice-ordered group; orthogonal -completeness
UR - http://eudml.org/doc/287643
ER -

References

top
  1. [1] R.R. Appleson and L. Lovász, A characterization of cancellable k-ary structures, Period. Math. Hungar. 6 (1975), 17-19. Zbl0306.08001
  2. [2] P. Conrad, Lattice-Ordered Groups, Tulane University, New Orleans, LA, 1970. Zbl0258.06011
  3. [3] P. Conrad and M.R. Darnel, Lattice-ordered groups whose lattices determine their additions, Trans. Amer. Math. Soc. 330 (1992), 575-598. Zbl0756.06009
  4. [4] P.F. Conrad and M.R. Darnel, Generalized Boolean algebras in lattice-ordered groups, Order 14 (1998), 295-319. Zbl0919.06009
  5. [5] P.F. Conrad and M.R. Darnel, Subgroups and hulls of Specker lattice-ordered groups, Czechoslovak Math. J. 51 (126) (2001), 395-413. Zbl0978.06011
  6. [6] A. De Simone, D. Mundici and M. Navara, A Cantor-Bernstein theorem for s-complete MV-algebras, Czechoslovak Math. J. 53 (128) (2003), 437-447. Zbl1024.06003
  7. [7] W. Hanf, On some fundamental problems concerning isomorphisms of Boolean algebras, Math. Scand. 5 (1957), 205-217. Zbl0081.26101
  8. [8] J. Jakubí k, Cantor-Bernstein theorem for lattice-ordered groups, Czechoslovak Math. J. 22 (97) (1972), 159-175. 
  9. [9] J. Jakubí k, Direct product decompositions of infinitely distributive lattices, Math. Bohemica 125 (2000), 341-354. Zbl0967.06004
  10. [10] J. Jakubí k, A theorem of Cantor-Bernstein type for orthogonally s-complete pseudo MV-algebras, Tatra Mt. Math. Publ. 22 (2001), 91-103. 
  11. [11] J. Jakubí k, Cantor-Bernstein theorem for lattices, Math. Bohemica 127 (2002), 463-471. Zbl1007.06005
  12. [12] J. Jakubí k, Torsion classes of Specker lattice-ordered groups, Czechoslovak Math. J. 52 (127) (2002), 469-482. 
  13. [13] J. Jakubí k, On orthogonally s-complete lattice-ordered groups, Czechoslovak Math. J. 52 (127) (2002), 881-888. 
  14. [14] D. Jakubí ková-Studenovská, On a cancellation law for monounary algebras, Math. Bohemica 128 (2003), 77-90. 
  15. [15] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hungar. 18 (1967), 321-328. Zbl0174.01401
  16. [16] L. Lovász, On the cancellation among finite relational structures, Period. Math. Hungar. 1 (1971), 145-156. Zbl0223.08002
  17. [17] R. McKenzie, Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971), 59-101. Zbl0228.08002
  18. [18] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Vol. 1, Wadsworth and Brooks/Cole, Montrey, CA, 1987. Zbl0611.08001
  19. [19] J. Novotný, On the characterization of a certain class of monounary algebras, Math. Slovaca 40 (1990), 123-126. Zbl0734.08003
  20. [20] M. Ploscica and M. Zelina, Cancellation among finite unary algebras, Discrete Math. 159 (1996), 191-198. 
  21. [21] R. Sikorski, A generalization of theorem of Banach and Cantor-Bernstein, Colloq. Math. 1 (1948), 140-144. Zbl0037.31801
  22. [22] R. Sikorski, Boolean Algebras, Second Edition, Springer-Verlag, Berlin 1964. 
  23. [23] A. Tarski, Cardinal Algebras, Oxford Univ. Press, New York 1949. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.