A non-associative generalization of MV-algebras

Ivan Chajda; Jan Kühr

Mathematica Slovaca (2007)

  • Volume: 57, Issue: 4, page [301]-312
  • ISSN: 0139-9918

How to cite

top

Chajda, Ivan, and Kühr, Jan. "A non-associative generalization of MV-algebras." Mathematica Slovaca 57.4 (2007): [301]-312. <http://eudml.org/doc/34648>.

@article{Chajda2007,
author = {Chajda, Ivan, Kühr, Jan},
journal = {Mathematica Slovaca},
keywords = {MV-algebra; -lattice},
language = {eng},
number = {4},
pages = {[301]-312},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A non-associative generalization of MV-algebras},
url = {http://eudml.org/doc/34648},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Chajda, Ivan
AU - Kühr, Jan
TI - A non-associative generalization of MV-algebras
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 4
SP - [301]
EP - 312
LA - eng
KW - MV-algebra; -lattice
UR - http://eudml.org/doc/34648
ER -

References

top
  1. ABBOTT J. C., Semi-boolean algebra, Mat. Vesnik 4 (1967), 177-198. (1967) Zbl0153.02704MR0239957
  2. BAHLS R.-COLE J.-GALATOS N.-JIPSEN R.-TSINAKIS C., Cancellative residuated lattices, Algebra Universalis 50 (2003), 83-106. Zbl1092.06012MR2026830
  3. CHAJDA I.-HALAŠ R.-KÜHR J., Distributive lattices with sectionally antitone involutions, Acta Sci. Math. (Szeged) 71 (2005), 19-33. Zbl1099.06006MR2160352
  4. CHAJDA I.-HALAŠ R.-KÜHR J., Implication in MV-algebras, Algebra Universalis 52 (2004), 377-382. Zbl1097.06011MR2120523
  5. CHANG C. C., Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) MR0094302
  6. CHANG C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
  7. CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ, Dordrecht-Boston-London, 2000. Zbl0937.06009MR1786097
  8. GALATOS N.-TSINAKIS C., Generalized MV-algebras, J. Algebra 283 (2005), 254-291. Zbl1063.06008MR2102083
  9. GEORGESCU C.-IORGULESCU A., Pseudo-MV algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  10. JEŽEK J.-QUACKENBUSH R., Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69. (1990) Zbl0699.08002MR1025835
  11. KARÁSEK J., Rotations of λ -lattices, Math. Bohem. 121 (1996), 293-300. (1996) Zbl0879.06001MR1419883
  12. MANGANI, R, Su certe algebre connesse con logiche a piú valori, Boll. Unione Mat. Ital. Ser. IV. 8 (1973), 68-78. (1973) Zbl0274.02007MR0337491
  13. MUNDICI D., Interpretation of A F C * -algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. (1986) Zbl0597.46059MR0819173
  14. RACHŮNEK J., A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. Zbl1012.06012MR1905434
  15. SNÁŠEL V., λ -lattices, Ph.D. Thesis, Masaryk Univ., Brno, 1991. (1991) 
  16. SNÁŠEL V., λ -lattices, Math. Bohem. 122 (1997), 267-272. (1997) Zbl0897.06003MR1600648

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.