Perturbed Hammerstein integral inclusions with solutions that change sign
Gennaro Infante; Paolamaria Pietramala
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 4, page 591-605
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topInfante, Gennaro, and Pietramala, Paolamaria. "Perturbed Hammerstein integral inclusions with solutions that change sign." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 591-605. <http://eudml.org/doc/35133>.
@article{Infante2009,
abstract = {We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of $[0,1]$. We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.},
author = {Infante, Gennaro, Pietramala, Paolamaria},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fixed point index; cone; nontrivial solution; fixed point index; cone; nontrivial solution; integral inclusions of Hammerstein; multivalued mappings},
language = {eng},
number = {4},
pages = {591-605},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Perturbed Hammerstein integral inclusions with solutions that change sign},
url = {http://eudml.org/doc/35133},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Infante, Gennaro
AU - Pietramala, Paolamaria
TI - Perturbed Hammerstein integral inclusions with solutions that change sign
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 591
EP - 605
AB - We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of $[0,1]$. We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.
LA - eng
KW - fixed point index; cone; nontrivial solution; fixed point index; cone; nontrivial solution; integral inclusions of Hammerstein; multivalued mappings
UR - http://eudml.org/doc/35133
ER -
References
top- Agarwal R.P., Avery R., Henderson J., O'Regan D., The five functionals fixed point theorem generalized to multivalued maps, J. Nonlinear Convex Anal. 4 (2003), 455--462. Zbl1065.47050MR2026456
- Agarwal R.P., O'Regan D., 10.1006/jdeq.1999.3690, J. Differential Equations 160 (2000), 389--403. Zbl1008.47055MR1736998DOI10.1006/jdeq.1999.3690
- Agarwal R.P., O'Regan D., 10.1016/S0096-3003(00)00077-1, Appl. Math. Comput. 123 (2001), 263--274. Zbl1033.47037MR1847915DOI10.1016/S0096-3003(00)00077-1
- Amann H., 10.1137/1018114, SIAM Rev. 18 (1976), 620--709. Zbl0345.47044MR0415432DOI10.1137/1018114
- Andres J., Górniewicz L., Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publishers, Dordrecht, 2003. MR1998968
- Aubin J.P., Cellina A., Differential Inclusions, Springer, Berlin, 1984. Zbl0538.34007MR0755330
- Benchohra M., Ntouyas S.K., A note on a three point boundary value problem for second order differental inclusions, Math. Notes (Miskolc) 2 (2001), 39--47. MR1854436
- Benchohra M., Ouahab A., Upper and lower solutions method for differential inclusions with integral boundary conditions, J. Appl. Math. Stoch. Anal. 2006, Art. ID 10490, 10 pp. Zbl1122.34006MR2212591
- Dhage B.C., Graef J.R., 10.1080/00036810500136197, Appl. Anal. 84 (2005), 953--970. Zbl1088.34009MR2172410DOI10.1080/00036810500136197
- Dhage B.C., Ntouyas S.K., Cho Y.J., On the second order discontinuous differential inclusions, J. Appl. Funct. Anal. 1 (2006), 469--476. Zbl1108.34302MR2220805
- Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985. Zbl0559.47040MR0787404
- Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992. Zbl0820.34009MR1189795
- Erbe L., Ma R., Tisdell C.C., On two point boundary value problems for second order differential inclusions, Dynam. Systems Appl. 15 (2006), 79--88. Zbl1112.34008MR2194094
- Fitzpatrick P.M., Petryshyn W.V., Fixed point theorems and the fixed point index for multivalued mappings in cones, J. London Math. Soc. 12 (1975/76), 75--85. Zbl0329.47022MR0405180
- Franco D., Infante G., O'Regan D., 10.1007/s10114-005-0782-3, Acta Math. Sin. (Engl. Ser.) 22 (2006), 1745--1750. Zbl1130.45004MR2262433DOI10.1007/s10114-005-0782-3
- Franco D., Infante G., O'Regan D., Nontrivial solutions in abstract cones for Hammerstein integral systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (2007), 837--850. Zbl1139.45004MR2369916
- Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988. Zbl0661.47045MR0959889
- Hong S., Wang L., 10.1016/j.jmaa.2006.01.057, J. Math. Anal. Appl. 317 (2006), 429--441. Zbl1125.45006MR2208929DOI10.1016/j.jmaa.2006.01.057
- Hong S., 10.1016/j.cam.2007.01.024, J. Comput. Appl. Math. 214 (2008), 19--29. Zbl1151.45004MR2391669DOI10.1016/j.cam.2007.01.024
- Infante G., 10.1017/S0013091501001079, Proc. Edinb. Math. Soc. 46 (2003), 75--86. Zbl1049.34015MR1961173DOI10.1017/S0013091501001079
- Infante G., Nonzero solutions of second order problems subject to nonlinear BCs, Dynamic systems and applications. Vol. 5, Dynamic, Atlanta, GA, (2008), 222--226. MR2468144
- Infante G., Webb J.R.L., 10.1016/S0022-247X(02)00125-7, J. Math. Anal. Appl. 272 (2002), 30--42. Zbl1008.45004MR1930701DOI10.1016/S0022-247X(02)00125-7
- Infante G., Webb J.R.L., 10.1216/jiea/1181074944, J. Integral Equations Appl. 15 (2003), 37--57. Zbl1055.34023MR2004793DOI10.1216/jiea/1181074944
- Infante G., Webb J.R.L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc. 49 (2006), 637--656. MR2266153DOI10.1017/S0013091505000532
- Infante G., Webb J.R.L., 10.1007/s00030-005-0039-y, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 249--261. Zbl1112.34017MR2243714DOI10.1007/s00030-005-0039-y
- Karakostas G.L., Tsamatos P.Ch., Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002), 109--121. Zbl1071.34023MR1921888
- Krasnosel'skiĭ M.A., Zabreĭko P.P., Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984. MR0736839
- Lan K.Q., Multiple positive solutions of Hammerstein integral equations with singularities, Diff. Eqns and Dynam. Syst. 8 (2000), 175--195. Zbl0977.45001MR1862603
- Lan K.Q., 10.1112/S002461070100206X, J. London Math. Soc. 63 (2001), 690--704. Zbl1032.34019MR1825983DOI10.1112/S002461070100206X
- Lan K.Q., Positive characteristic values and optimal constants for three-point boundary value problems, Differential & Difference Equations and Applications, 623--633, Hindawi Publ. Corp., New York, 2006. Zbl1129.34008MR2309394
- Lan K.Q., 10.1016/j.aml.2006.04.018, Appl. Math. Lett. 20 (2007), 352--357. Zbl1125.34307MR2292572DOI10.1016/j.aml.2006.04.018
- Lan K.Q., Yang G.C., Optimal constants for two point boundary value problems, Discrete Contin. Dyn. Syst., suppl. (2007), 624--633. Zbl1163.34328MR2409898
- Lasota A., Opial Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781--786. Zbl0151.10703MR0196178
- Ma T., Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1--42. Zbl0211.25903MR0309103
- Ma R., Castaneda N., 10.1006/jmaa.2000.7320, J. Math. Anal. Appl. 256 (2001), 556--567. Zbl0988.34009MR1821757DOI10.1006/jmaa.2000.7320
- Marino G., 10.1016/0362-546X(90)90061-K, Nonlinear Anal. 14 (1990), 545--558. Zbl0692.34018MR1044285DOI10.1016/0362-546X(90)90061-K
- O'Regan D., 10.1090/S0002-9939-96-03456-9, Proc. Amer. Math. Soc. 124 (1996), 2391--2399. Zbl0860.45007MR1342037DOI10.1090/S0002-9939-96-03456-9
- O'Regan D., Zima M., 10.1016/j.amc.2006.09.035, Appl. Math. Comput. 187 (2007), 1238-1249. Zbl1126.47046MR2321327DOI10.1016/j.amc.2006.09.035
- O'Regan D., Zima M., 10.1016/j.na.2007.02.034, Nonlinear Anal. 68 (2008), 2879--2888. Zbl1152.47041MR2404806DOI10.1016/j.na.2007.02.034
- Webb J.R.L., 10.1016/S0362-546X(01)00547-8, Nonlinear Anal. 47 (2001), 4319--4332. Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
- Webb J.R.L., Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst., suppl. (2005), 895--903. Zbl1161.34007MR2192752
- Webb J.R.L., 10.1016/j.na.2005.02.055, Nonlinear Anal. 63 (2005), 672--685. Zbl1153.34320MR2188140DOI10.1016/j.na.2005.02.055
- Webb J.R.L., Fixed point index and its application to positive solutions of nonlocal boundary value problems, Seminar of Mathematical Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 181--205. Zbl1124.47040MR2276962
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.