Perturbed Hammerstein integral inclusions with solutions that change sign

Gennaro Infante; Paolamaria Pietramala

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 4, page 591-605
  • ISSN: 0010-2628

Abstract

top
We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of [ 0 , 1 ] . We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.

How to cite

top

Infante, Gennaro, and Pietramala, Paolamaria. "Perturbed Hammerstein integral inclusions with solutions that change sign." Commentationes Mathematicae Universitatis Carolinae 50.4 (2009): 591-605. <http://eudml.org/doc/35133>.

@article{Infante2009,
abstract = {We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of $[0,1]$. We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.},
author = {Infante, Gennaro, Pietramala, Paolamaria},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {fixed point index; cone; nontrivial solution; fixed point index; cone; nontrivial solution; integral inclusions of Hammerstein; multivalued mappings},
language = {eng},
number = {4},
pages = {591-605},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Perturbed Hammerstein integral inclusions with solutions that change sign},
url = {http://eudml.org/doc/35133},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Infante, Gennaro
AU - Pietramala, Paolamaria
TI - Perturbed Hammerstein integral inclusions with solutions that change sign
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 4
SP - 591
EP - 605
AB - We establish new existence results for nontrivial solutions of some integral inclusions of Hammerstein type, that are perturbed with an affine functional. In order to use a theory of fixed point index for multivalued mappings, we work in a cone of continuous functions that are positive on a suitable subinterval of $[0,1]$. We also discuss the optimality of some constants that occur in our theory. We improve, complement and extend previous results in the literature.
LA - eng
KW - fixed point index; cone; nontrivial solution; fixed point index; cone; nontrivial solution; integral inclusions of Hammerstein; multivalued mappings
UR - http://eudml.org/doc/35133
ER -

References

top
  1. Agarwal R.P., Avery R., Henderson J., O'Regan D., The five functionals fixed point theorem generalized to multivalued maps, J. Nonlinear Convex Anal. 4 (2003), 455--462. Zbl1065.47050MR2026456
  2. Agarwal R.P., O'Regan D., 10.1006/jdeq.1999.3690, J. Differential Equations 160 (2000), 389--403. Zbl1008.47055MR1736998DOI10.1006/jdeq.1999.3690
  3. Agarwal R.P., O'Regan D., 10.1016/S0096-3003(00)00077-1, Appl. Math. Comput. 123 (2001), 263--274. Zbl1033.47037MR1847915DOI10.1016/S0096-3003(00)00077-1
  4. Amann H., 10.1137/1018114, SIAM Rev. 18 (1976), 620--709. Zbl0345.47044MR0415432DOI10.1137/1018114
  5. Andres J., Górniewicz L., Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publishers, Dordrecht, 2003. MR1998968
  6. Aubin J.P., Cellina A., Differential Inclusions, Springer, Berlin, 1984. Zbl0538.34007MR0755330
  7. Benchohra M., Ntouyas S.K., A note on a three point boundary value problem for second order differental inclusions, Math. Notes (Miskolc) 2 (2001), 39--47. MR1854436
  8. Benchohra M., Ouahab A., Upper and lower solutions method for differential inclusions with integral boundary conditions, J. Appl. Math. Stoch. Anal. 2006, Art. ID 10490, 10 pp. Zbl1122.34006MR2212591
  9. Dhage B.C., Graef J.R., 10.1080/00036810500136197, Appl. Anal. 84 (2005), 953--970. Zbl1088.34009MR2172410DOI10.1080/00036810500136197
  10. Dhage B.C., Ntouyas S.K., Cho Y.J., On the second order discontinuous differential inclusions, J. Appl. Funct. Anal. 1 (2006), 469--476. Zbl1108.34302MR2220805
  11. Deimling K., Nonlinear Functional Analysis, Springer, Berlin, 1985. Zbl0559.47040MR0787404
  12. Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992. Zbl0820.34009MR1189795
  13. Erbe L., Ma R., Tisdell C.C., On two point boundary value problems for second order differential inclusions, Dynam. Systems Appl. 15 (2006), 79--88. Zbl1112.34008MR2194094
  14. Fitzpatrick P.M., Petryshyn W.V., Fixed point theorems and the fixed point index for multivalued mappings in cones, J. London Math. Soc. 12 (1975/76), 75--85. Zbl0329.47022MR0405180
  15. Franco D., Infante G., O'Regan D., 10.1007/s10114-005-0782-3, Acta Math. Sin. (Engl. Ser.) 22 (2006), 1745--1750. Zbl1130.45004MR2262433DOI10.1007/s10114-005-0782-3
  16. Franco D., Infante G., O'Regan D., Nontrivial solutions in abstract cones for Hammerstein integral systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (2007), 837--850. Zbl1139.45004MR2369916
  17. Guo D., Lakshmikantham V., Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988. Zbl0661.47045MR0959889
  18. Hong S., Wang L., 10.1016/j.jmaa.2006.01.057, J. Math. Anal. Appl. 317 (2006), 429--441. Zbl1125.45006MR2208929DOI10.1016/j.jmaa.2006.01.057
  19. Hong S., 10.1016/j.cam.2007.01.024, J. Comput. Appl. Math. 214 (2008), 19--29. Zbl1151.45004MR2391669DOI10.1016/j.cam.2007.01.024
  20. Infante G., 10.1017/S0013091501001079, Proc. Edinb. Math. Soc. 46 (2003), 75--86. Zbl1049.34015MR1961173DOI10.1017/S0013091501001079
  21. Infante G., Nonzero solutions of second order problems subject to nonlinear BCs, Dynamic systems and applications. Vol. 5, Dynamic, Atlanta, GA, (2008), 222--226. MR2468144
  22. Infante G., Webb J.R.L., 10.1016/S0022-247X(02)00125-7, J. Math. Anal. Appl. 272 (2002), 30--42. Zbl1008.45004MR1930701DOI10.1016/S0022-247X(02)00125-7
  23. Infante G., Webb J.R.L., 10.1216/jiea/1181074944, J. Integral Equations Appl. 15 (2003), 37--57. Zbl1055.34023MR2004793DOI10.1216/jiea/1181074944
  24. Infante G., Webb J.R.L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc. 49 (2006), 637--656. MR2266153DOI10.1017/S0013091505000532
  25. Infante G., Webb J.R.L., 10.1007/s00030-005-0039-y, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 249--261. Zbl1112.34017MR2243714DOI10.1007/s00030-005-0039-y
  26. Karakostas G.L., Tsamatos P.Ch., Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002), 109--121. Zbl1071.34023MR1921888
  27. Krasnosel'skiĭ M.A., Zabreĭko P.P., Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984. MR0736839
  28. Lan K.Q., Multiple positive solutions of Hammerstein integral equations with singularities, Diff. Eqns and Dynam. Syst. 8 (2000), 175--195. Zbl0977.45001MR1862603
  29. Lan K.Q., 10.1112/S002461070100206X, J. London Math. Soc. 63 (2001), 690--704. Zbl1032.34019MR1825983DOI10.1112/S002461070100206X
  30. Lan K.Q., Positive characteristic values and optimal constants for three-point boundary value problems, Differential & Difference Equations and Applications, 623--633, Hindawi Publ. Corp., New York, 2006. Zbl1129.34008MR2309394
  31. Lan K.Q., 10.1016/j.aml.2006.04.018, Appl. Math. Lett. 20 (2007), 352--357. Zbl1125.34307MR2292572DOI10.1016/j.aml.2006.04.018
  32. Lan K.Q., Yang G.C., Optimal constants for two point boundary value problems, Discrete Contin. Dyn. Syst., suppl. (2007), 624--633. Zbl1163.34328MR2409898
  33. Lasota A., Opial Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781--786. Zbl0151.10703MR0196178
  34. Ma T., Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1--42. Zbl0211.25903MR0309103
  35. Ma R., Castaneda N., 10.1006/jmaa.2000.7320, J. Math. Anal. Appl. 256 (2001), 556--567. Zbl0988.34009MR1821757DOI10.1006/jmaa.2000.7320
  36. Marino G., 10.1016/0362-546X(90)90061-K, Nonlinear Anal. 14 (1990), 545--558. Zbl0692.34018MR1044285DOI10.1016/0362-546X(90)90061-K
  37. O'Regan D., 10.1090/S0002-9939-96-03456-9, Proc. Amer. Math. Soc. 124 (1996), 2391--2399. Zbl0860.45007MR1342037DOI10.1090/S0002-9939-96-03456-9
  38. O'Regan D., Zima M., 10.1016/j.amc.2006.09.035, Appl. Math. Comput. 187 (2007), 1238-1249. Zbl1126.47046MR2321327DOI10.1016/j.amc.2006.09.035
  39. O'Regan D., Zima M., 10.1016/j.na.2007.02.034, Nonlinear Anal. 68 (2008), 2879--2888. Zbl1152.47041MR2404806DOI10.1016/j.na.2007.02.034
  40. Webb J.R.L., 10.1016/S0362-546X(01)00547-8, Nonlinear Anal. 47 (2001), 4319--4332. Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
  41. Webb J.R.L., Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst., suppl. (2005), 895--903. Zbl1161.34007MR2192752
  42. Webb J.R.L., 10.1016/j.na.2005.02.055, Nonlinear Anal. 63 (2005), 672--685. Zbl1153.34320MR2188140DOI10.1016/j.na.2005.02.055
  43. Webb J.R.L., Fixed point index and its application to positive solutions of nonlocal boundary value problems, Seminar of Mathematical Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 181--205. Zbl1124.47040MR2276962

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.