Topological degrees of set-valued compact fields in locally convex spaces

Tsoy-Wo Ma

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1972

Abstract

top
CONTENTSIntroduction................................................................................................................................................. 5I. General properties of set-valued compact fields............................................................................. 61. Upper semicontinuous maps............................................................................................................. 62. Generalization of Dugundji's extension theorem............................................................................ 73. Set-valued compact fields................................................................................................................... 94. Reduction to finite dimensional vector spaces............................................................................... 105. Reduction to single-valued compact fields...................................................................................... 12II. Topological degrees of set-valued compact fields in locally convex spaces............................. 166. Basic known facts about Brouwer's degrees................................................................................... 167. Definition of topological degree and its homotopy invariance...................................................... 178. Sum theorem.......................................................................................................................................... 209. The case of odd degrees..................................................................................................................... 2210. The case of non-vanishing degrees................................................................................................ 2511. Reduction formula............................................................................................................................... 2812. Translation invariance and component dependence.................................................................. 2913. Product of domains............................................................................................................................. 3014. Generalized Hopf theorem for metrizable locally convex spaces.............................................. 3115. Product theorem for composite maps............................................................................................ 33III. Extension of some classical results to set-valued maps............................................................. 3816. Fixed point theorems and fixed point indices................................................................................ 3817. Extension of Borsuk's sweeping theorem...................................................................................... 3918. Extension of Borsuk-Ulam's theorem............................................................................................. 4019. Extension of Brouwer's invariance of domains............................................................................. 40References.................................................................................................................................................. 43

How to cite

top

Tsoy-Wo Ma. Topological degrees of set-valued compact fields in locally convex spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1972. <http://eudml.org/doc/268504>.

@book{Tsoy1972,
abstract = {CONTENTSIntroduction................................................................................................................................................. 5I. General properties of set-valued compact fields............................................................................. 61. Upper semicontinuous maps............................................................................................................. 62. Generalization of Dugundji's extension theorem............................................................................ 73. Set-valued compact fields................................................................................................................... 94. Reduction to finite dimensional vector spaces............................................................................... 105. Reduction to single-valued compact fields...................................................................................... 12II. Topological degrees of set-valued compact fields in locally convex spaces............................. 166. Basic known facts about Brouwer's degrees................................................................................... 167. Definition of topological degree and its homotopy invariance...................................................... 178. Sum theorem.......................................................................................................................................... 209. The case of odd degrees..................................................................................................................... 2210. The case of non-vanishing degrees................................................................................................ 2511. Reduction formula............................................................................................................................... 2812. Translation invariance and component dependence.................................................................. 2913. Product of domains............................................................................................................................. 3014. Generalized Hopf theorem for metrizable locally convex spaces.............................................. 3115. Product theorem for composite maps............................................................................................ 33III. Extension of some classical results to set-valued maps............................................................. 3816. Fixed point theorems and fixed point indices................................................................................ 3817. Extension of Borsuk's sweeping theorem...................................................................................... 3918. Extension of Borsuk-Ulam's theorem............................................................................................. 4019. Extension of Brouwer's invariance of domains............................................................................. 40References.................................................................................................................................................. 43},
author = {Tsoy-Wo Ma},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Topological degrees of set-valued compact fields in locally convex spaces},
url = {http://eudml.org/doc/268504},
year = {1972},
}

TY - BOOK
AU - Tsoy-Wo Ma
TI - Topological degrees of set-valued compact fields in locally convex spaces
PY - 1972
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................. 5I. General properties of set-valued compact fields............................................................................. 61. Upper semicontinuous maps............................................................................................................. 62. Generalization of Dugundji's extension theorem............................................................................ 73. Set-valued compact fields................................................................................................................... 94. Reduction to finite dimensional vector spaces............................................................................... 105. Reduction to single-valued compact fields...................................................................................... 12II. Topological degrees of set-valued compact fields in locally convex spaces............................. 166. Basic known facts about Brouwer's degrees................................................................................... 167. Definition of topological degree and its homotopy invariance...................................................... 178. Sum theorem.......................................................................................................................................... 209. The case of odd degrees..................................................................................................................... 2210. The case of non-vanishing degrees................................................................................................ 2511. Reduction formula............................................................................................................................... 2812. Translation invariance and component dependence.................................................................. 2913. Product of domains............................................................................................................................. 3014. Generalized Hopf theorem for metrizable locally convex spaces.............................................. 3115. Product theorem for composite maps............................................................................................ 33III. Extension of some classical results to set-valued maps............................................................. 3816. Fixed point theorems and fixed point indices................................................................................ 3817. Extension of Borsuk's sweeping theorem...................................................................................... 3918. Extension of Borsuk-Ulam's theorem............................................................................................. 4019. Extension of Brouwer's invariance of domains............................................................................. 40References.................................................................................................................................................. 43
LA - eng
UR - http://eudml.org/doc/268504
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.