Topological degrees of set-valued compact fields in locally convex spaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1972
Access Full Book
topAbstract
topHow to cite
topTsoy-Wo Ma. Topological degrees of set-valued compact fields in locally convex spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1972. <http://eudml.org/doc/268504>.
@book{Tsoy1972,
abstract = {CONTENTSIntroduction................................................................................................................................................. 5I. General properties of set-valued compact fields............................................................................. 61. Upper semicontinuous maps............................................................................................................. 62. Generalization of Dugundji's extension theorem............................................................................ 73. Set-valued compact fields................................................................................................................... 94. Reduction to finite dimensional vector spaces............................................................................... 105. Reduction to single-valued compact fields...................................................................................... 12II. Topological degrees of set-valued compact fields in locally convex spaces............................. 166. Basic known facts about Brouwer's degrees................................................................................... 167. Definition of topological degree and its homotopy invariance...................................................... 178. Sum theorem.......................................................................................................................................... 209. The case of odd degrees..................................................................................................................... 2210. The case of non-vanishing degrees................................................................................................ 2511. Reduction formula............................................................................................................................... 2812. Translation invariance and component dependence.................................................................. 2913. Product of domains............................................................................................................................. 3014. Generalized Hopf theorem for metrizable locally convex spaces.............................................. 3115. Product theorem for composite maps............................................................................................ 33III. Extension of some classical results to set-valued maps............................................................. 3816. Fixed point theorems and fixed point indices................................................................................ 3817. Extension of Borsuk's sweeping theorem...................................................................................... 3918. Extension of Borsuk-Ulam's theorem............................................................................................. 4019. Extension of Brouwer's invariance of domains............................................................................. 40References.................................................................................................................................................. 43},
author = {Tsoy-Wo Ma},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Topological degrees of set-valued compact fields in locally convex spaces},
url = {http://eudml.org/doc/268504},
year = {1972},
}
TY - BOOK
AU - Tsoy-Wo Ma
TI - Topological degrees of set-valued compact fields in locally convex spaces
PY - 1972
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction................................................................................................................................................. 5I. General properties of set-valued compact fields............................................................................. 61. Upper semicontinuous maps............................................................................................................. 62. Generalization of Dugundji's extension theorem............................................................................ 73. Set-valued compact fields................................................................................................................... 94. Reduction to finite dimensional vector spaces............................................................................... 105. Reduction to single-valued compact fields...................................................................................... 12II. Topological degrees of set-valued compact fields in locally convex spaces............................. 166. Basic known facts about Brouwer's degrees................................................................................... 167. Definition of topological degree and its homotopy invariance...................................................... 178. Sum theorem.......................................................................................................................................... 209. The case of odd degrees..................................................................................................................... 2210. The case of non-vanishing degrees................................................................................................ 2511. Reduction formula............................................................................................................................... 2812. Translation invariance and component dependence.................................................................. 2913. Product of domains............................................................................................................................. 3014. Generalized Hopf theorem for metrizable locally convex spaces.............................................. 3115. Product theorem for composite maps............................................................................................ 33III. Extension of some classical results to set-valued maps............................................................. 3816. Fixed point theorems and fixed point indices................................................................................ 3817. Extension of Borsuk's sweeping theorem...................................................................................... 3918. Extension of Borsuk-Ulam's theorem............................................................................................. 4019. Extension of Brouwer's invariance of domains............................................................................. 40References.................................................................................................................................................. 43
LA - eng
UR - http://eudml.org/doc/268504
ER -
Citations in EuDML Documents
top- Gennaro Infante, Paolamaria Pietramala, Perturbed Hammerstein integral inclusions with solutions that change sign
- Siegfried Hahn, Eigenwertaussagen für kompakte und kondensierende mengenwertige Abbildungen in topologischen Vektorräumen
- Siegfried Hahn, Gebietsinvarianzsatz und Eigenwertaussagen für konzentrierende Abbildungen
- Siegfried Hahn, Ein elementarer Zugang zur Leray-Schauder-Theorie
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.