Recent knowledge of the number
Pokroky matematiky, fyziky a astronomie (1998)
- Volume: 43, Issue: 3, page 217-236
- ISSN: 0032-2423
Access Full Article
topHow to cite
topNetuka, Ivan, and Veselý, Jiří. "Nedávné poznatky o čísle $\pi $." Pokroky matematiky, fyziky a astronomie 43.3 (1998): 217-236. <http://eudml.org/doc/35257>.
@article{Netuka1998,
author = {Netuka, Ivan, Veselý, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {; normality; computational methods; numerical algorithms},
language = {cze},
number = {3},
pages = {217-236},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Nedávné poznatky o čísle $\pi $},
url = {http://eudml.org/doc/35257},
volume = {43},
year = {1998},
}
TY - JOUR
AU - Netuka, Ivan
AU - Veselý, Jiří
TI - Nedávné poznatky o čísle $\pi $
JO - Pokroky matematiky, fyziky a astronomie
PY - 1998
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 43
IS - 3
SP - 217
EP - 236
LA - cze
KW - ; normality; computational methods; numerical algorithms
UR - http://eudml.org/doc/35257
ER -
References
top- Adamchik, V., Wagon, S., : A 2000-year-old search changes direction, Mathematica in Education and Research 5 (1996), 11–19 (text článku lze nalézt v elektronické podobě na URL adrese <http://www.wolfram.com/~victor/articles/pi/pi.html>). (1996)
- Adamchik, V., Wagon, S., A simple formula for , Amer. Math. Monthly 104 (1997), 852–855. (1997) Zbl0886.11073MR1479991
- Bailey, D. H., A polynomial time, numerically stable integer relation algorithm, NAS Technical Report Server (RNR-91-032, December 1991). (1991)
- Bailey, D. H., Borwein, P. B., Plouffe, S., On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997), 903–913. (1997) Zbl0879.11073MR1415794
- Bailey, D. H., Ferguson, H. R. P., Numerical results on relations between fundamental constants using a new algorithm, Math. Comp. 53 (1989), 649–656 (*). (1989) Zbl0687.10002MR0979934
- Bailey, D. H., Plouffe, S., Recognizing numerical constants, Organic mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20 (1977), Amer. Math. Soc., Providence, RI, 73–88 (preprint z r. 1995). (1977) Zbl0898.11049MR1483914
- Bailey, D. H., Borwein, J. M., Borwein, P. B., Plouffe, S., The quest for Pi, Math. Intelligencer 19 (1997), no. 1, 50–57. (1997) Zbl0878.11002MR1439159
- Beckmann, P., Historie čísla , Academia, Praha 1998 (překlad 5. vydání z r. 1982). (1998)
- Bellard, F., [unknown], <http://www-stud.enst.fr/~bellard/pi-challenge/index.html> a dále <http://www-stud.enst.fr/~bellard/pi-challenge/announce220997.html>.
- Berggren, L., Borwein, J. M., Borwein, P. B., : A source book, Springer, New York 1997. (1997) Zbl0876.11001MR1467531
- Borwein, J. M., Borwein, P. B., The arithmetic-geometric mean and fast computation of elementary functions, SIAM Rev. 26 (1984), 351–366 (*). (1984) Zbl0557.65009MR0750454
- Borwein, J. M., Borwein, P. B., Pi and the AGM: A study in analytic number theory and computational complexity, John Wiley & Sons, New York 1987. (1987) Zbl0611.10001MR0877728
- Borwein, J. M., Borwein, P. B., Ramanujan and Pi, Science and applications; Supercomputing 88, Vol. II (1988), 112–117 (*). (1988)
- Borwein, J. M., Borwein, P. B., Dilcher, K., , Euler numbers and asymptotic expansion, Amer. Math. Monthly 96 (1989), 681–687 (*). (1989) Zbl0711.11009MR1019148
- Borwein, J. M., Borwein, P. B., Girgensohn, R., Parnes, S., Making sense of experimental mathematics, Math. Intelligencer 18 (1996), no. 4, 12–18 (preprint s názvem “Experimental mathematics: a discussion” z r. 1995 je k dispozici na serveru CECM, viz [23]). (1996) Zbl0874.00027MR1413248
- Borwein, J. M., Borwein, P. B., Bailey, D. H., Ramanujan, modular equations, and approximations to Pi or How to compute one bilion digits of Pi, Amer. Math. Monthly 96 (1989), 201–219 (*). (1989) Zbl0672.10017MR0991866
- Brent, R. P., Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Mach. 23 (1976), 242–251 (*). (1976) Zbl0324.65018MR0395314
- Castellanos, D., The ubiquitous , Math. Magazin 61 (1988), 67–98 a 149–163. (1988) Zbl0654.10002MR0934824
- Goldstine, H. H., A history of numerical analysis from the 16th through the 19th century, Springer, New York 1977. (1977) Zbl0402.01005MR0484905
- Hančl, J., Two proofs of transcendency of and e, Czech. Math. Journal 35 (1985), 543–549. (1985) Zbl0587.10017MR0809040
- Iwamoto, Y., A proof that is irrational, J. Osaka Inst. Sci. Tech. 1 (1949), 147–148. (1949) Zbl0037.31406MR0037863
- Jarník, V., Diferenciální počet I, Academia, Praha 1984 (6. vydání). (1984)
- Kanada, Y., [unknown], <ftp://www.cc.u-tokyo.ac.jp/readme.our_latest_record> (lze také nalézt na adrese <http://cecm.sfu.ca/personal/jborwein/Kanada_50b.html>). Zbl1052.68668
- Kořínek, V., Základy algebry, NČSAV, Praha 1953. (1953) MR0075914
- Knopp, K., Theorie und Anwendungen der unendlichen Reihen, Springer, Berlin 1924. (1924) Zbl50.0150.12MR0028430
- Niven, I., A simple proof that is irrational, Bull. Amer. Math. Soc. 53 (1947), 509 (*). (1947) Zbl0037.31404MR0021013
- Novák, B., O sedmém Hilbertově problému, Pokroky MFA 17 (1972), 245–256. (1972)
- Novák, B., A remark to a paper of J. F. Koksma, Nieuw Arch. voor Wiskunde 23 (1975), 195–197. (1975) Zbl0313.10033MR0406941
- Novák, B., Vybrané kapitoly z teorie čísel, SPN, Praha 1972. (1972)
- Plouffe, S., [unknown], <http://www.lacim.uqam.ca/ploufe/Simon/results.html>. Zbl1010.11071
- Rabinowitz, S. D., Wagon, S., A spigot algorithm for the digits of , Amer. Math. Monthly 103 (1995), 195–203. (1995) Zbl0853.11102MR1317842
- Ramanujan, S., Modular equations and approximations to , Quart. J. Math. 45 (1914), 350–372. (1914) Zbl45.1249.01
- Salamin, E., Computation of using arithmetic-geometric mean, Math. Comp. 30 (1976), 565–570 (*). (1976) Zbl0345.10003MR0404124
- Taylor, S. J., Pravidelnost náhodnosti, Pokroky MFA 25 (1980), 28–34 (překlad). (1980)
- Veselý, J., aneb 3,14159.., Učitel matematiky 3 (15), 4 (16) (1995), 1–10 a 1–13. (1995)
- Veselý, J., Matematická analýza pro učitele, Matfyzpress, vydavatelství MFF UK, Praha 1997. (1997)
- Wagon, S., Is Pi normal?, Math. Inteligencer 7 (1985), no. 3, 65–67 (*). (1985) Zbl0565.10002MR0795541
- Williams, R., [unknown], <http://www.ccsf.caltech.edu/~roy/pi.formulas.html>. Zbl1200.57005
- Borwein, J. M., Brouwer-Heyting sequence converge, Math. Intelligencer 20 (1998), no. 1, 14–15. (1998) Zbl0921.00003MR1601815
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.