The solution of the n -body problem

F. Diacu

Pokroky matematiky, fyziky a astronomie (1997)

  • Volume: 42, Issue: 3, page 113-121
  • ISSN: 0032-2423

How to cite

top

Diacu, F.. "Řešení problému $n$ těles." Pokroky matematiky, fyziky a astronomie 42.3 (1997): 113-121. <http://eudml.org/doc/37427>.

@article{Diacu1997,
author = {Diacu, F.},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {-body problem},
language = {cze},
number = {3},
pages = {113-121},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Řešení problému $n$ těles},
url = {http://eudml.org/doc/37427},
volume = {42},
year = {1997},
}

TY - JOUR
AU - Diacu, F.
TI - Řešení problému $n$ těles
JO - Pokroky matematiky, fyziky a astronomie
PY - 1997
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 42
IS - 3
SP - 113
EP - 121
LA - cze
KW - -body problem
UR - http://eudml.org/doc/37427
ER -

References

top
  1. Anderson, K. G., Poincaré’s discovery of homoclinic points, Archive for History of Exact Sciences 48 (1994), 133–147. (1994) MR1309499
  2. Barrow-Green, J., Oscar II’s prize competition and the error in Poincaré’s memoir on the three body problem, Archive for History of Exact Sciences 48 (1994), 107–131. (1994) Zbl0812.01010MR1309498
  3. Bernoulli, J., Opera Omnia, vol. I, Georg Olms Verlagsbuchhandlung, Hildesheim, 1968. (1968) MR0256841
  4. Bisconcini, G., Sur le problème des trois corps, Acta Mathematica 30 (1906), 49–92. (1906) Zbl36.0773.03MR1555023
  5. Bruns, E. H., Über die Integrale des Vielkörper-Problems, Acta Mathematica 11 (1887), 25–96. (1887) 
  6. Calude, C., Jürgensen, H., Zimand, M., Is independence an exception?, Applied Math. Comput. 66 (1994), 63–76. (1994) Zbl0822.03024MR1315359
  7. Diacu, F. N., Singularities of the N -body Problem, Les Publications CRM, Montreal, 1992. (1992) Zbl0754.70009MR1181673
  8. Diacu, F. N., Painlevé’s conjecture, The Mathematical Intelligencer 15 (1993), no. 2, 6–12. (1993) Zbl0769.70011MR1212516
  9. Diacu, F. N., Holmes, P., Celestial Encounters—The Origins of Chaos and Stability, Princeton University Press (to appear in August 1996). (1996) Zbl0944.37001MR1435973
  10. J., Dieudonné, A History of Algebraic and Differential Topology 1900–1960, Birkhäuser, Boston, Basel, 1989. (1989) MR0995842
  11. Goldstein, R. L., Essays in the Philosophy of Mathematics, Leicester University Press, 1965. (1965) 
  12. Gödel, K., Über formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme, Monatshefte für Mathematik und Physik 38 (1931), 173–198. (1931) Zbl57.0054.02
  13. Poincaré, H., New Methods of Celestial Mechanics (with an introduction by D. L. Gorogg), American Institute of Physics, 1993. (1993) 
  14. Saari, D. G., A visit to the Newtonian N -body problem via elementary complex variables, The American Mathematical Monthly 97 (1990), 105–119. (1990) Zbl0748.70008MR1041887
  15. Siegel, C. L., Der Dreierstoss, Annals of Mathematics 42 (1941), 127–168. (1941) Zbl0024.36404MR0003736
  16. Sundman, K., Recherches sur le Problème des trois corps, Acta Societatis Scientiarium Fennicae 34 (1907), no. 6. (1907) Zbl40.1017.07
  17. Sundman, K., Nouvelles recherches sur le problème des trois corps, Acta Societatis Scientiarium Fennicae 35 (1909), no. 9. (1909) Zbl40.1017.07
  18. Sundman, K., Mémoire sur le problème des trois corps, Acta Mathematica 36 (1912), 105–179. (1912) Zbl43.0826.01
  19. Urenko, J. B., Improbability of collisions in Newtonian gravitational systems of specified angular momentum, SIAM J. Appl. Math. 36 (1979), 123–147. (1979) Zbl0408.70011MR0519189
  20. Wang, Q., The global solution of the n -body problem, Celestial Mechanics 50 (1991), 73–88. (1991) Zbl0726.70006MR1117788
  21. Wintner, A., The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, NJ, 1941. (1941) Zbl0026.02302MR0005824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.