A geometric study of many-body systems.
In this article we show some aspects of analytical and numerical solution of the -body problem, which arises from the classical Newtonian model for gravitation attraction. We prove the non-existence of stationary solutions and give an alternative proof for Painlevé’s theorem.
One of the most interesting phenomena exhibited by ultracold quantum gases is the appearance of vortices when the gas is put in rotation. The talk will bring a survey of some recent progress in understanding this phenomenon starting from the many-body ground state of a Bose gas with short range interactions. Mathematically this amounts to describing solutions of a linear Schrödinger equation with a very large number of variables in terms of a nonlinear equation with few variables and analyzing the...
In this paper, a new control concept for a class of underactuated mechanical system is introduced. Namely, the class of -link chains, composed of rigid links, non actuated at the pivot point is considered. Underactuated mechanical systems are those having less actuators than degrees of freedom and thereby requiring more sophisticated nonlinear control methods. This class of systems includes among others frequently used for the modeling of walking planar structures. This paper presents the stabilization...