Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity

Giovanni Calvaruso

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 2, page 119-134
  • ISSN: 0044-8753

Abstract

top
We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.

How to cite

top

Calvaruso, Giovanni. "Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity." Archivum Mathematicum 046.2 (2010): 119-134. <http://eudml.org/doc/37772>.

@article{Calvaruso2010,
abstract = {We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.},
author = {Calvaruso, Giovanni},
journal = {Archivum Mathematicum},
keywords = {conformally flat manifolds; semi-symmetric and pseudo-symmetric spaces; homogeneous and curvature homogeneous spaces; conformally flat manifold; semi-symmetric space; pseudo-symmetric space; homogeneous space; curvature homogeneous space},
language = {eng},
number = {2},
pages = {119-134},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity},
url = {http://eudml.org/doc/37772},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Calvaruso, Giovanni
TI - Conformally flat Lorentzian three-spaces with various properties of symmetry and homogeneity
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 2
SP - 119
EP - 134
AB - We study conformally flat Lorentzian three-manifolds which are either semi-symmetric or pseudo-symmetric. Their complete classification is obtained under hypotheses of local homogeneity and curvature homogeneity. Moreover, examples which are not curvature homogeneous are described.
LA - eng
KW - conformally flat manifolds; semi-symmetric and pseudo-symmetric spaces; homogeneous and curvature homogeneous spaces; conformally flat manifold; semi-symmetric space; pseudo-symmetric space; homogeneous space; curvature homogeneous space
UR - http://eudml.org/doc/37772
ER -

References

top
  1. Boeckx, E., Kowalski, O., Vanhecke, L., Riemannian manifolds of conullity two, World Scientific, 1996. (1996) Zbl0904.53006MR1462887
  2. Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R., 10.1063/1.1832755, J. Math. Phys. 46 (2005), 11pp., 022501. (2005) Zbl1076.53084MR2121707DOI10.1063/1.1832755
  3. Bueken, P., 10.1016/S0393-0440(96)00037-X, J. Geom. Phys. 22 (1997), 349–362. (1997) Zbl0881.53055MR1454495DOI10.1016/S0393-0440(96)00037-X
  4. Bueken, P., Djorić, M., 10.1023/A:1006612120550, Ann. Glob. Anal. Geom. 18 (2000), 85–103. (2000) MR1739527DOI10.1023/A:1006612120550
  5. Calvaruso, G., Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one, Canad. Math. Bull., to appear. MR1811888
  6. Calvaruso, G., Conformally flat semi-symmetric spaces, Arch. Math. (Brno) 41 (2005), 27–36. (2005) Zbl1114.53027MR2142141
  7. Calvaruso, G., 10.1007/s10587-006-0045-1, Czechoslovak Math. J. 56 (131) (2006), 649–657. (2006) Zbl1164.53339MR2291764DOI10.1007/s10587-006-0045-1
  8. Calvaruso, G., 10.1007/s10711-007-9163-7, Geom. Dedicata 127 (2007), 99–119. (2007) MR2338519DOI10.1007/s10711-007-9163-7
  9. Calvaruso, G., 10.1016/j.geomphys.2006.10.005, J. Geom. Phys. 57 (2007), 1279–1291. (2007) Zbl1112.53051MR2287304DOI10.1016/j.geomphys.2006.10.005
  10. Calvaruso, G., De Leo, B.,, 10.1142/S0219887809004132, Int. J. Geom. Methods Mod. Phys. 6 (7) (2009), 1–16. (2009) Zbl1192.53064MR2589823DOI10.1142/S0219887809004132
  11. Calvaruso, G., Van der Veken, J.,, 10.1142/S0129167X09005728, Internat. J. Math. 20 (10) (2009), 1185–1205. (2009) MR2574312DOI10.1142/S0129167X09005728
  12. Calvaruso, G., Vanhecke, L., 10.1017/S0004972700031452, Bull. Austral. Math. Soc. 57 (1998), 109–115. (1998) Zbl0903.53031MR1623824DOI10.1017/S0004972700031452
  13. Chaichi, M., García-Río, E., Vázquez-Abal, M. E., 10.1088/0305-4470/38/4/005, J. Phys. A: Math. Gen. 38 (2005), 841–850. (2005) MR2125237DOI10.1088/0305-4470/38/4/005
  14. Deprez, J., Desczcz, R., Verstraelen, L., Examples of pseudo-symmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51–65. (1989) MR1007875
  15. García-Río, E., Haji-Badali, A., Vázquez-Abal, M. E., Vázquez-Lorenz, R., 10.1142/S0219887808002941, Int. J. Geom. Methods Mod. Phys. 5 (4) (2008), 557–572. (2008) MR2428812DOI10.1142/S0219887808002941
  16. Hashimoto, N., Sekizawa, M., Three-dimensional conformally flat pseudo-symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286. (2000) Zbl1054.53060MR1811172
  17. Honda, K., 10.3836/tjm/1244208691, Tokyo J. Math. 26 (1) (2003), 241–260. (2003) Zbl1055.53054MR1982008DOI10.3836/tjm/1244208691
  18. Honda, K., Tsukada, K., 10.1088/1751-8113/40/4/017, J. Phys. A: Math. Theor. 40 (2007), 831–851. (2007) Zbl1116.53042MR2303606DOI10.1088/1751-8113/40/4/017
  19. O’Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983. (1983) MR0719023
  20. Ryan, P., A note on conformally flat spaces with constant scalar curvature, Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., 1971 (2), Dalhousie Univ. Halifax, 1972, pp. 115–124. (1972) Zbl0267.53024MR0487882
  21. Sekigawa, K., Takagi, H., 10.2748/tmj/1178242681, Tôhoku Math. J. 23 (1971), 1–11. (1971) MR0284946DOI10.2748/tmj/1178242681
  22. Singer, I. M., 10.1002/cpa.3160130408, Comm. Pure Appl. Math. 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
  23. Szabó, Z. I., Structure theorems on Riemannian manifolds satisfying R ( X , Y ) · R = 0 , I, The local version, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165
  24. Szabó, Z. I., 10.1007/BF00233102, Geom. Dedicata 19 (1985), 65–108. (1985) MR0797152DOI10.1007/BF00233102
  25. Takagi, H., 10.2748/tmj/1178241595, Tôhoku Math. J. 24 (1972), 105–108. (1972) MR0319109DOI10.2748/tmj/1178241595
  26. Takagi, H., 10.2748/tmj/1178241040, Tohôku Math. J. 27 (1975), 103–110. (1975) Zbl0323.53037MR0442852DOI10.2748/tmj/1178241040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.