Three-dimensional conformally flat pseudo-symmetric spaces of constant type

Norio Hashimoto; Masami Sekizawa

Archivum Mathematicum (2000)

  • Volume: 036, Issue: 4, page 279-286
  • ISSN: 0044-8753

Abstract

top
An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature.

How to cite

top

Hashimoto, Norio, and Sekizawa, Masami. "Three-dimensional conformally flat pseudo-symmetric spaces of constant type." Archivum Mathematicum 036.4 (2000): 279-286. <http://eudml.org/doc/248525>.

@article{Hashimoto2000,
abstract = {An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature.},
author = {Hashimoto, Norio, Sekizawa, Masami},
journal = {Archivum Mathematicum},
keywords = {Riemannian manifold; conformally flat space; pseudo-symmetric space; warped product; Riemannian manifold; pseudo-Riemannian space; conformally flat},
language = {eng},
number = {4},
pages = {279-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Three-dimensional conformally flat pseudo-symmetric spaces of constant type},
url = {http://eudml.org/doc/248525},
volume = {036},
year = {2000},
}

TY - JOUR
AU - Hashimoto, Norio
AU - Sekizawa, Masami
TI - Three-dimensional conformally flat pseudo-symmetric spaces of constant type
JO - Archivum Mathematicum
PY - 2000
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 036
IS - 4
SP - 279
EP - 286
AB - An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature.
LA - eng
KW - Riemannian manifold; conformally flat space; pseudo-symmetric space; warped product; Riemannian manifold; pseudo-Riemannian space; conformally flat
UR - http://eudml.org/doc/248525
ER -

References

top
  1. Boeckx E., Kowalski O., Vanhecke L., Riemannian Manifold of Conullity Two, World Scientific, Singapore, 1996. (1996) MR1462887
  2. Deprez J., Deszcz R., Verstraelen L., Examples of pseudo-symmetric conformally flat warped products, Chinese J. Math 17(1989), 51–65. (1989) Zbl0678.53022MR1007875
  3. Deszcz R., On pseudo-symmetric spaces, Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34. (1992) 
  4. Eisenhart L. P., Riemannian Geometry, Princeton University, Sixth Printing 1966. (First Printing 1925.) (1966) MR1487892
  5. Hájková V., Foliated semi-symmetric spaces in dimension 3, (in Czech), Doctoral Thesis, Prague, 1995. (1995) 
  6. Kowalski O., A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ρ 1 = ρ 2 ρ 3 , Nagoya Math. J. 132(1993), 1–36. (1993) MR1253692
  7. Kowalski O., An explicit classification of 3-dimensional Riemannian spaces satisfying R ( X , Y ) · R = 0 , Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991). (1996) Zbl0879.53014MR1408298
  8. Kowalski O., Sekizawa M., Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues ρ 1 = ρ 2 ρ 3 > 0 , Arch. Math. 32(1996), 137–145. (1996) MR1407345
  9. Kowalski O., Sekizawa M., Riemannian 3-manifolds with c -conullity two, Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184. (1997) Zbl0879.53034MR1456259
  10. Kowalski O., Sekizawa M., Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces, Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512. (1997) Zbl0889.53026MR1608724
  11. Kowalski O., Sekizawa M., Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces, Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28. (1998) Zbl0945.53020MR1656076
  12. Kowalski O., Sekizawa M., Pseudo-symmetric Spaces of Constant Type in Dimension Three, Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998. (1998) Zbl0945.53020
  13. Mikeš J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci., New York 1996, 311–333. (1996) Zbl0866.53028MR1384327
  14. Milnor J., Curvatures of left invarinat metrics on Lie groups, Adv. Math. 21(1976), 293–329. (1976) MR0425012
  15. O’Neill B., Semi-Riemannian Geometry With Applications to Relativity, Academic Press, New York-London, 1983. (1983) Zbl0531.53051MR0719023
  16. Takagi H., Conformally flat Riemannian manifolds admitting a transitive group of isometries, Tôhoku Math. Journ. 27(1975), 103–110. (1975) Zbl0323.53037MR0442852

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.