On quasi-stationary models of mixtures of compressible fluids
Applications of Mathematics (2008)
- Volume: 53, Issue: 4, page 319-345
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFrehse, Jens, and Weigant, Wladimir. "On quasi-stationary models of mixtures of compressible fluids." Applications of Mathematics 53.4 (2008): 319-345. <http://eudml.org/doc/37787>.
@article{Frehse2008,
abstract = {We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.},
author = {Frehse, Jens, Weigant, Wladimir},
journal = {Applications of Mathematics},
keywords = {compressible viscous fluids; miscible mixtures; quasi-stationary; compressible viscous fluids; miscible mixtures; quasi-stationary},
language = {eng},
number = {4},
pages = {319-345},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On quasi-stationary models of mixtures of compressible fluids},
url = {http://eudml.org/doc/37787},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Frehse, Jens
AU - Weigant, Wladimir
TI - On quasi-stationary models of mixtures of compressible fluids
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 319
EP - 345
AB - We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.
LA - eng
KW - compressible viscous fluids; miscible mixtures; quasi-stationary; compressible viscous fluids; miscible mixtures; quasi-stationary
UR - http://eudml.org/doc/37787
ER -
References
top- Bernardi, Ch., Pironneau, O., 10.1080/03605309108820752, Commun. Partial Differential Equations 16 (1991), 59-104. (1991) Zbl0723.76033MR1096834DOI10.1080/03605309108820752
- Feireisl, E., 10.1006/jdeq.2001.4137, J. Differ. Equations 184 (2002), 97-108. (2002) Zbl1012.76079MR1929148DOI10.1006/jdeq.2001.4137
- Feireisl, E., Dynamics of Compressible Flow, Oxford University Press Oxford (2003). (2003)
- Feireisl, E., Novotný, A., Petzeltová, H., 10.1007/PL00000976, J. Math. Fluid Mech. 3 (2001), 358-392. (2001) MR1867887DOI10.1007/PL00000976
- Frehse, J., Goj, S., Málek, J., 10.1137/S0036141003433425, SIAM J. Math. Anal. 36 (2005), 1259-1281 (electronic). (2005) Zbl1084.35057MR2139449DOI10.1137/S0036141003433425
- Frehse, J., Goj, S., Málek, J., 10.1007/s10492-005-0035-x, Appl. Math. 50 (2005), 527-541. (2005) Zbl1099.35079MR2181024DOI10.1007/s10492-005-0035-x
- Gagliardo, E., Ulteriori proprietà di alcune classi di funzioni in più variabili, Ric. Mat. 8 (1959), 24-51. (1959) Zbl0199.44701MR0109295
- Goj, S., Analysis for mixtures of fluids. Bonner Math. Schriften, Dissertation Universität Bonn, Math. Inst. (2005), http://bib.math.uni-bonn.de/pdf2/BMS-375.pdf. MR2205590
- Golovkin, K. K., On imbedding theorems, Soviet Math. Dokl. 1 (1960), 998-1001. (1960) Zbl0104.33102MR0121640
- Haupt, P., Continuum Mechanics Theory of Materials, 2nd ed. Advanced Texts in Physics, Springer Berlin (2002). (2002) MR2011110
- Il'in, V. P., On theorems of ``imbedding'', Trudy Mat. Inst. Steklov. 53 (1959), 359-386. (1959) MR0112930
- Kazhikhov, A. V., Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk 216 (1974), 1008-1010 Russian. (1974)
- Kazhikhov, A. V., 10.1007/BF00995131, Acta Appl. Math. 37 (1994), 77-81. (1994) Zbl0815.35083MR1308747DOI10.1007/BF00995131
- Ladyzhenskaya, O. A., Solonnikov, V. A., On the unique solvability of the initial value problem for viscous incompressible inhomogeneous fluids, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI) 52 (1975), 52-109, 218-219 Russian. (1975) Zbl0376.76021
- Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 1: Compressible Models. Oxford Science Publications, Clarendon Press Oxford (1996). (1996) MR1422251
- Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models. Oxford Science Publications, Clarendon Press Oxford (1998). (1998) MR1637634
- Mamontov, A. E., 10.1007/BF02110728, Sib. Mat. Zh. 37 (1996), 1117-1131. (1996) Zbl0884.76077MR1643271DOI10.1007/BF02110728
- Nouri, A., Poupaud, F., Demay, Y., 10.1090/qam/1466141, Q. Appl. Math. 55 (1997), 421-435. (1997) Zbl0882.35091MR1466141DOI10.1090/qam/1466141
- Nouri, A., Poupaud, F., 10.1006/jdeq.1995.1139, J. Differ. Equations 122 (1995), 71-88. (1995) Zbl0842.35079MR1356130DOI10.1006/jdeq.1995.1139
- Rajagopal, K. R., Tao, L., Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences Vol. 35, World Scientific Publishing River Edge (1995). (1995) MR1370661
- Solonnikov, V. A., On boundary value problems for linear parabolic systems of differential equations of general form, Trudy Mat. Inst. Steklov 83 (1965), 3-163. (1965) Zbl0164.12502MR0211083
- Solonnikov, V. A., On the solvability of the initial-boundary problem for the equations of motion of a viscous compressible fluid, Zap. Nauchn. Semin. Leningrad, Otd. Mat. Inst. Steklova (LOMI) 56 (1976), 128-142. (1976) MR0481666
- Tani, A., 10.2977/prims/1195190106, Publ. Res. Inst. Math. Sci., Kyoto Univ. 13 (1977), 193-253. (1977) Zbl0366.35070DOI10.2977/prims/1195190106
- Vaigant, V. A., Kazhikhov, A. V., Global solutions of equations of potential flows of a compressible viscous fluid for small Reynolds numbers, Differentsial'nye Uravneniya 30 (1994), 1010-1022. (1994) MR1312722
- Yudovich, V. I., Nichtstationäre Strömung einer idealen inkompressiblen Flüssigkeit, Zh. Vychisl. Mat. Fiz. 3 (1963), 1032-1066 Russian. (1963) Zbl0129.19402
- Yudovich, V. I., Linearization Method in the Hydrodynamic Stability Theory, Izdatel'stvo Rostovskogo Universiteta Rostov (1984), Russian. (1984) Zbl0553.76038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.