Superconvergence estimates of finite element methods for American options
Qun Lin; Tang Liu; Shu Hua Zhang
Applications of Mathematics (2009)
- Volume: 54, Issue: 3, page 181-202
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLin, Qun, Liu, Tang, and Zhang, Shu Hua. "Superconvergence estimates of finite element methods for American options." Applications of Mathematics 54.3 (2009): 181-202. <http://eudml.org/doc/37815>.
@article{Lin2009,
abstract = {In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. 39 (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation postprocessing analysis technique, we present sharp $L^2$-, $L^\{\infty \}$-norm error estimates and an $H^1$-norm superconvergence estimate for this finite element method. As a by-product, the global superconvergence result can be used to generate an efficient a posteriori error estimator.},
author = {Lin, Qun, Liu, Tang, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {American options; variational inequality; finite element methods; optimal and superconvergent estimates; interpolation postprocessing; a posteriori error estimators; American options; variational inequality; finite element methods; optimal and superconvergent estimates; interpolation postprocessing; a posteriori error estimators},
language = {eng},
number = {3},
pages = {181-202},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Superconvergence estimates of finite element methods for American options},
url = {http://eudml.org/doc/37815},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Lin, Qun
AU - Liu, Tang
AU - Zhang, Shu Hua
TI - Superconvergence estimates of finite element methods for American options
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 181
EP - 202
AB - In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. 39 (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation postprocessing analysis technique, we present sharp $L^2$-, $L^{\infty }$-norm error estimates and an $H^1$-norm superconvergence estimate for this finite element method. As a by-product, the global superconvergence result can be used to generate an efficient a posteriori error estimator.
LA - eng
KW - American options; variational inequality; finite element methods; optimal and superconvergent estimates; interpolation postprocessing; a posteriori error estimators; American options; variational inequality; finite element methods; optimal and superconvergent estimates; interpolation postprocessing; a posteriori error estimators
UR - http://eudml.org/doc/37815
ER -
References
top- Allegretto, W., Barone-Adesi, G., Dinenis, E., Lin, Y., Sorwar, G., A new approach to check the free boundary of single factor interest rate put option, Finance 20 (1999), 153-168. (1999)
- Allegretto, W., Barone-Adesi, G., Elliott, R. J., 10.1080/13518479500000009, European J. Finance 1 (1995), 69-78. (1995) DOI10.1080/13518479500000009
- Allegretto, W., Lin, Y., Yang, H., 10.1137/S0036142900370137, SIAM J. Numer. Anal. 39 (2001), 834-857. (2001) Zbl0996.91064MR1860447DOI10.1137/S0036142900370137
- Allegretto, W., Lin, Y., Yang, H., A fast and highly accurate numerical method for the evaluation of American options, Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms 8 (2001), 127-138. (2001) Zbl1108.91034MR1824289
- Badea, L., Wang, J., A new formulation for the valuation of American options. I. Solution uniqueness. II. Solution existence, Anal. Sci. Comput. (Eun-Jae Park, Jongwoo Lee, eds.) 5 (2000), 3-16, 17-33. (2000)
- Barone-Adesi, G., Whaley, R. E., 10.1111/j.1540-6261.1987.tb02569.x, J. Finance 42 (1987), 301-320. (1987) DOI10.1111/j.1540-6261.1987.tb02569.x
- Black, F., Scholes, M., 10.1086/260062, J. Polit. Econ. 81 (1973), 637-659. (1973) Zbl1092.91524DOI10.1086/260062
- Boyle, P., Broadie, M., Glasserman, P., 10.1016/S0165-1889(97)00028-6, J. Econ. Dyn. Control 21 (1997), 1267-1321. (1997) Zbl0901.90007MR1470283DOI10.1016/S0165-1889(97)00028-6
- Brennan, M. J., Schwartz, E. S., 10.2307/2326779, J. Finance 32 (1997), 449-462. (1997) DOI10.2307/2326779
- Broadie, M., Detemple, J., 10.1093/rfs/9.4.1211, Rev. Financial Studies 9 (1996), 1211-1250. (1996) DOI10.1093/rfs/9.4.1211
- Crank, J., Free and Moving Boundary Problems, Clarendon Press Oxford (1984). (1984) Zbl0547.35001MR0776227
- Duffy, D. J., Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, John Wiley & Sons Hoboken (2006). (2006) MR2286409
- Eaves, B. C., 10.1007/BF01584073, Math. Program. 1 (1971), 68-75. (1971) Zbl0227.90044MR0287901DOI10.1007/BF01584073
- Elliott, C. M., Ockendon, J. R., Weak and Variational Methods for Moving Boundary Problems, Pitman Boston-London-Melbourne (1982). (1982) Zbl0476.35080MR0650455
- Fetter, A., 10.1007/BF01408576, Numer. Math. 50 (1987), 557-565. (1987) MR0880335DOI10.1007/BF01408576
- Feistauer, M., 10.1080/01630568908816293, Numer. Funct. Anal. Optimization 10 (1989), 91-110. (1989) Zbl0668.65008MR0978805DOI10.1080/01630568908816293
- Han, W., Chen, X., An Introduction to Variational Inequalities: Elementary Theory, Numerical Analysis and Applications, Higher Education Press Beijing (2007). (2007) MR2791918
- Huang, J., Subrahmanyam, M. C., Yu, G. G., 10.1093/rfs/9.1.277, Rev. Financial Studies 9 (1996), 277-300. (1996) DOI10.1093/rfs/9.1.277
- Hull, J., Option, Futures and Other Derivative Securities, 2nd edition, Prentice Hall New Jersey (1993). (1993)
- Jaillet, P., Lamberton, D., Lapeyre, B., 10.1007/BF00047211, Acta Appl. Math. 21 (1990), 263-289. (1990) Zbl0714.90004MR1096582DOI10.1007/BF00047211
- Jiang, L., Dai, M., 10.1137/S0036142902414220, SIAM J. Numer. Anal. 42 (2004), 1094-1109. (2004) Zbl1159.91392MR2113677DOI10.1137/S0036142902414220
- Jiang, L., Dai, M., Convergence of the explicit difference scheme and binomial tree method for American options, J. Comput. Math. 22 (2004), 371-380. (2004) MR2056293
- Jiang, L., Mathematical Modeling and Methods of Options Pricing, Higher Education Press Beijing (2003). (2003) MR1318688
- Johnson, H. E., 10.2307/2330809, J. Financial and Quantitative Anal. 18 (1983), 141-148. (1983) DOI10.2307/2330809
- Křížek, M., Neittaanmäki, P., Bibliography on superconvergence, In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, Lecture Notes in Pure and Appl. Math. 196 M. Křížek et al. Marcel Dekker New York (1998), 315-348. (1998) MR1602730
- Kwok, Y. K., Mathematical Models of Financial Derivatives, Springer Singapore (1998). (1998) Zbl0931.91018MR1645143
- Lin, Q., Yan, N., The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers Baoding (1996), Chinese. (1996)
- Lin, Q., Zhang, S., 10.1023/A:1022264125558, Appl. Math. 42 (1997), 1-21. (1997) Zbl0902.65090MR1426677DOI10.1023/A:1022264125558
- Liu, M., Wang, J., Pricing American options by domain decomposition methods, In: Iterative Methods in Scientific Computation J. Wang, H. Allen, H. Chen, L. Mathew IMACS Publication (1998). (1998)
- Liu, T., Zhang, P., Numerical methods for option pricing problems, J. Syst. Sci. & Math. Sci. 12 (2003), 12-20. (2003) MR2034582
- Marcozzi, M. D., 10.1137/S1064827599364647, SIAM J. Sci. Comput. 22 (2001), 1865-1884. (2001) Zbl0980.60047MR1813301DOI10.1137/S1064827599364647
- MacMillan, L. W., Analytic approximation for the American put option, Adv. in Futures and Options Res. 1 (1986), 1149-1159. (1986)
- McKean, H. P., Appendix: A free boundary problem for the heat equation arising from a problem in mathematical economics, Industrial Management Rev. 6 (1965), 32-39. (1965)
- Merton, R. C., 10.2307/3003143, Bell J. Econom. and Management Sci. 4 (1973), 141-183. (1973) MR0496534DOI10.2307/3003143
- Sanchez, A. M., Arcangéli, R., 10.1007/BF01389473, Numer. Math. 45 (1984), 301-321 French. (1984) Zbl0587.41018MR0766187DOI10.1007/BF01389473
- Topper, J., Financial Engineering with Finite Elements, John Wiley & Sons Hoboken (2005). (2005)
- Underwood, R., Wang, J., 10.1016/S1468-1218(01)00028-1, Nonlinear. Anal., Real World Appl. 3 (2002), 259-274. (2002) Zbl1011.91049MR1893977DOI10.1016/S1468-1218(01)00028-1
- Vuik, C., 10.1007/BF01386423, Numer. Math. 57 (1990), 453-471. (1990) MR1063805DOI10.1007/BF01386423
- Wilmott, P., Dewynne, J., Howison, S., Option Pricing: Mathematical Models and Computation, Financial Press Oxford (1995). (1995) Zbl0844.90011MR1357666
- Zhang, T., The numerical methods for American options pricing, Acta Math. Appl. Sin. 25 (2002), 113-122. (2002) MR1926728
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.