The combination technique for a two-dimensional convection-diffusion problem with exponential layers
Sebastian Franz; Fang Liu; Hans-Görg Roos; Martin Stynes; Aihui Zhou
Applications of Mathematics (2009)
- Volume: 54, Issue: 3, page 203-223
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFranz, Sebastian, et al. "The combination technique for a two-dimensional convection-diffusion problem with exponential layers." Applications of Mathematics 54.3 (2009): 203-223. <http://eudml.org/doc/37816>.
@article{Franz2009,
abstract = {Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing $N$ for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on $N \times \sqrt\{N\}$, $\sqrt\{N\} \times N$ and $\sqrt\{N\} \times \sqrt\{N\}$ meshes. It is shown that the combination FEM yields (up to a factor $\ln N$) the same order of accuracy in the associated energy norm as the Galerkin FEM on an $N\times N$ mesh, but it requires only $\mathcal \{O\}(N^\{3/2\})$ degrees of freedom compared with the $\mathcal \{O\}(N^2)$ used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method.},
author = {Franz, Sebastian, Liu, Fang, Roos, Hans-Görg, Stynes, Martin, Zhou, Aihui},
journal = {Applications of Mathematics},
keywords = {convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM; convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM},
language = {eng},
number = {3},
pages = {203-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The combination technique for a two-dimensional convection-diffusion problem with exponential layers},
url = {http://eudml.org/doc/37816},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Franz, Sebastian
AU - Liu, Fang
AU - Roos, Hans-Görg
AU - Stynes, Martin
AU - Zhou, Aihui
TI - The combination technique for a two-dimensional convection-diffusion problem with exponential layers
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 203
EP - 223
AB - Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing $N$ for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on $N \times \sqrt{N}$, $\sqrt{N} \times N$ and $\sqrt{N} \times \sqrt{N}$ meshes. It is shown that the combination FEM yields (up to a factor $\ln N$) the same order of accuracy in the associated energy norm as the Galerkin FEM on an $N\times N$ mesh, but it requires only $\mathcal {O}(N^{3/2})$ degrees of freedom compared with the $\mathcal {O}(N^2)$ used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method.
LA - eng
KW - convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM; convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM
UR - http://eudml.org/doc/37816
ER -
References
top- Bank, R. E., 10.1017/S0962492900002610, Acta Numerica 5 (1996), 1-43. (1996) Zbl0865.65078MR1624587DOI10.1017/S0962492900002610
- Bungartz, H.-J., Griebel, M., 10.1017/S0962492904000182, Acta. Numerica 13 (2004), 147-269. (2004) Zbl1122.65405MR2249147DOI10.1017/S0962492904000182
- Bungartz, H.-J., Griebel, M., Rüde, U., 10.1016/S0045-7825(94)80029-4, Comput. Methods Appl. Mech. Eng. 116 (1994), 243-252. (1994) MR1286533DOI10.1016/S0045-7825(94)80029-4
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, SIAM Philadelphia (2002). (2002) MR1930132
- Delvos, F.-J., 10.1016/0021-9045(82)90085-5, J. Approximation Theory 34 (1982), 99-114. (1982) Zbl0504.41004MR0647256DOI10.1016/0021-9045(82)90085-5
- Dobrowolski, M., Roos, H.-G., 10.4171/ZAA/801, Z. Anal. Anwend. (1997), 16 1001-1012. (1997) Zbl0892.35014MR1615644DOI10.4171/ZAA/801
- Garcke, J., Griebel, M., 10.1006/jcph.2000.6627, J. Comput. Phys. 165 (2000), 694-716. (2000) Zbl0979.65101MR1807302DOI10.1006/jcph.2000.6627
- Griebel, M., Schneider, M., Zenger, C., A combination technique for the solution of sparse grid problem, Iterative Methods in Linear Algebra. Proceedings of the IMASS, International symposium, Brussels, Belgium, April 2-4, 1991 P. de Groen, R. Beauwens North-Holland Amsterdam (1992), 263-281. (1992) MR1159736
- Lin, Q., Yan, N., Zhou, A., 10.1007/PL00005456, Numer. Math. 88 (2001), 731-742. (2001) Zbl0989.65134MR1836877DOI10.1007/PL00005456
- Linß, T., 10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R, Numer. Methods Partial Differ. Equations 16 (2000), 426-440. (2000) MR1778398DOI10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R
- Linß, T., 10.1016/S0045-7825(02)00630-8, Comput. Methods Appl. Mech. Eng. 192 (2003), 1061-1105. (2003) Zbl1022.76036MR1960975DOI10.1016/S0045-7825(02)00630-8
- Lin{ß}, T., Stynes, M., 10.1006/jmaa.2001.7550, J. Math. Anal. Appl. 261 (2001), 604-632. (2001) Zbl1200.35046MR1853059DOI10.1006/jmaa.2001.7550
- Liu, F., Madden, N., Stynes, M., Zhou, A., A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions, IMA J. Numer. Anal (to appear). Zbl1188.65153MR2557053
- Liu, F., Zhou, A., Two-scale finite element discretizations for partial differential equations, J. Comput. Math. 24 (2006), 373-392. (2006) Zbl1100.65101MR2229717
- Liu, F., Zhou, A., 10.3934/cpaa.2007.6.757, Commun. Pure Appl. Anal. 6 (2007), 757-773. (2007) Zbl1141.65079MR2318298DOI10.3934/cpaa.2007.6.757
- Liu, F., Zhou, A., 10.1137/050633007, SIAM J. Numer. Anal. 45 (2007), 296-312. (2007) Zbl1144.65087MR2285856DOI10.1137/050633007
- Miller, J. J., O'Riordan, E., Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific Singapore (1996). (1996) Zbl0915.65097MR1439750
- Noordmans, J., Hemker, P. W., 10.1007/s006070070005, Computing 65 (2000), 357-378. (2000) MR1811355DOI10.1007/s006070070005
- O'Riordan, E., Shishkin, G. I., 10.1016/j.cam.2006.06.002, J. Comput. Appl. Math. 206 (2007), 136-145. (2007) Zbl1117.65145MR2333841DOI10.1016/j.cam.2006.06.002
- Pflaum, C., Zhou, A., 10.1007/s002110050474, Numer. Math. 84 (1999), 327-350. (1999) Zbl0942.65122MR1730012DOI10.1007/s002110050474
- Roos, H.-G., Stynes, M., Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations, Springer Berlin (1996). (1996) Zbl0844.65075MR1477665
- Stynes, M., O'Riordan, E., 10.1006/jmaa.1997.5581, J. Math. Anal. Appl. 214 (1997), 36-54. (1997) Zbl0917.65088MR1645503DOI10.1006/jmaa.1997.5581
- Stynes, M., Tobiska, L., 10.1137/S0036142902404728, SIAM J. Numer. Anal. 41 (2003), 1620-1642. (2003) Zbl1055.65121MR2035000DOI10.1137/S0036142902404728
- Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
- Yserentant, H., 10.1007/BF01389538, Numer. Math. 49 (1986), 379-412. (1986) Zbl0625.65109MR0853662DOI10.1007/BF01389538
- Zenger, C., Sparse grids, In: Parallel Algorithms for Partial Differential Equations (Proc. 6th GAMM-Seminar, Kiel, 1990). Notes Numer. Fluid Mech. 31 (1991), 241-251. (1991) Zbl0763.65091MR1167882
- Zhang, Z., 10.1090/S0025-5718-03-01486-8, Math. Comput. 72 (2003), 1147-1177. (2003) Zbl1019.65091MR1972731DOI10.1090/S0025-5718-03-01486-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.