The combination technique for a two-dimensional convection-diffusion problem with exponential layers

Sebastian Franz; Fang Liu; Hans-Görg Roos; Martin Stynes; Aihui Zhou

Applications of Mathematics (2009)

  • Volume: 54, Issue: 3, page 203-223
  • ISSN: 0862-7940

Abstract

top
Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing N for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on N × N , N × N and N × N meshes. It is shown that the combination FEM yields (up to a factor ln N ) the same order of accuracy in the associated energy norm as the Galerkin FEM on an N × N mesh, but it requires only 𝒪 ( N 3 / 2 ) degrees of freedom compared with the 𝒪 ( N 2 ) used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method.

How to cite

top

Franz, Sebastian, et al. "The combination technique for a two-dimensional convection-diffusion problem with exponential layers." Applications of Mathematics 54.3 (2009): 203-223. <http://eudml.org/doc/37816>.

@article{Franz2009,
abstract = {Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing $N$ for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on $N \times \sqrt\{N\}$, $\sqrt\{N\} \times N$ and $\sqrt\{N\} \times \sqrt\{N\}$ meshes. It is shown that the combination FEM yields (up to a factor $\ln N$) the same order of accuracy in the associated energy norm as the Galerkin FEM on an $N\times N$ mesh, but it requires only $\mathcal \{O\}(N^\{3/2\})$ degrees of freedom compared with the $\mathcal \{O\}(N^2)$ used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method.},
author = {Franz, Sebastian, Liu, Fang, Roos, Hans-Görg, Stynes, Martin, Zhou, Aihui},
journal = {Applications of Mathematics},
keywords = {convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM; convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM},
language = {eng},
number = {3},
pages = {203-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The combination technique for a two-dimensional convection-diffusion problem with exponential layers},
url = {http://eudml.org/doc/37816},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Franz, Sebastian
AU - Liu, Fang
AU - Roos, Hans-Görg
AU - Stynes, Martin
AU - Zhou, Aihui
TI - The combination technique for a two-dimensional convection-diffusion problem with exponential layers
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 203
EP - 223
AB - Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing $N$ for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on $N \times \sqrt{N}$, $\sqrt{N} \times N$ and $\sqrt{N} \times \sqrt{N}$ meshes. It is shown that the combination FEM yields (up to a factor $\ln N$) the same order of accuracy in the associated energy norm as the Galerkin FEM on an $N\times N$ mesh, but it requires only $\mathcal {O}(N^{3/2})$ degrees of freedom compared with the $\mathcal {O}(N^2)$ used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method.
LA - eng
KW - convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM; convection-diffusion; finite element; Shishkin mesh; two-scale discretization; exponential layers; Galerkin FEM
UR - http://eudml.org/doc/37816
ER -

References

top
  1. Bank, R. E., 10.1017/S0962492900002610, Acta Numerica 5 (1996), 1-43. (1996) Zbl0865.65078MR1624587DOI10.1017/S0962492900002610
  2. Bungartz, H.-J., Griebel, M., 10.1017/S0962492904000182, Acta. Numerica 13 (2004), 147-269. (2004) Zbl1122.65405MR2249147DOI10.1017/S0962492904000182
  3. Bungartz, H.-J., Griebel, M., Rüde, U., 10.1016/S0045-7825(94)80029-4, Comput. Methods Appl. Mech. Eng. 116 (1994), 243-252. (1994) MR1286533DOI10.1016/S0045-7825(94)80029-4
  4. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, SIAM Philadelphia (2002). (2002) MR1930132
  5. Delvos, F.-J., 10.1016/0021-9045(82)90085-5, J. Approximation Theory 34 (1982), 99-114. (1982) Zbl0504.41004MR0647256DOI10.1016/0021-9045(82)90085-5
  6. Dobrowolski, M., Roos, H.-G., 10.4171/ZAA/801, Z. Anal. Anwend. (1997), 16 1001-1012. (1997) Zbl0892.35014MR1615644DOI10.4171/ZAA/801
  7. Garcke, J., Griebel, M., 10.1006/jcph.2000.6627, J. Comput. Phys. 165 (2000), 694-716. (2000) Zbl0979.65101MR1807302DOI10.1006/jcph.2000.6627
  8. Griebel, M., Schneider, M., Zenger, C., A combination technique for the solution of sparse grid problem, Iterative Methods in Linear Algebra. Proceedings of the IMASS, International symposium, Brussels, Belgium, April 2-4, 1991 P. de Groen, R. Beauwens North-Holland Amsterdam (1992), 263-281. (1992) MR1159736
  9. Lin, Q., Yan, N., Zhou, A., 10.1007/PL00005456, Numer. Math. 88 (2001), 731-742. (2001) Zbl0989.65134MR1836877DOI10.1007/PL00005456
  10. Linß, T., 10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R, Numer. Methods Partial Differ. Equations 16 (2000), 426-440. (2000) MR1778398DOI10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.0.CO;2-R
  11. Linß, T., 10.1016/S0045-7825(02)00630-8, Comput. Methods Appl. Mech. Eng. 192 (2003), 1061-1105. (2003) Zbl1022.76036MR1960975DOI10.1016/S0045-7825(02)00630-8
  12. Lin{ß}, T., Stynes, M., 10.1006/jmaa.2001.7550, J. Math. Anal. Appl. 261 (2001), 604-632. (2001) Zbl1200.35046MR1853059DOI10.1006/jmaa.2001.7550
  13. Liu, F., Madden, N., Stynes, M., Zhou, A., A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions, IMA J. Numer. Anal (to appear). Zbl1188.65153MR2557053
  14. Liu, F., Zhou, A., Two-scale finite element discretizations for partial differential equations, J. Comput. Math. 24 (2006), 373-392. (2006) Zbl1100.65101MR2229717
  15. Liu, F., Zhou, A., 10.3934/cpaa.2007.6.757, Commun. Pure Appl. Anal. 6 (2007), 757-773. (2007) Zbl1141.65079MR2318298DOI10.3934/cpaa.2007.6.757
  16. Liu, F., Zhou, A., 10.1137/050633007, SIAM J. Numer. Anal. 45 (2007), 296-312. (2007) Zbl1144.65087MR2285856DOI10.1137/050633007
  17. Miller, J. J., O'Riordan, E., Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific Singapore (1996). (1996) Zbl0915.65097MR1439750
  18. Noordmans, J., Hemker, P. W., 10.1007/s006070070005, Computing 65 (2000), 357-378. (2000) MR1811355DOI10.1007/s006070070005
  19. O'Riordan, E., Shishkin, G. I., 10.1016/j.cam.2006.06.002, J. Comput. Appl. Math. 206 (2007), 136-145. (2007) Zbl1117.65145MR2333841DOI10.1016/j.cam.2006.06.002
  20. Pflaum, C., Zhou, A., 10.1007/s002110050474, Numer. Math. 84 (1999), 327-350. (1999) Zbl0942.65122MR1730012DOI10.1007/s002110050474
  21. Roos, H.-G., Stynes, M., Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations, Springer Berlin (1996). (1996) Zbl0844.65075MR1477665
  22. Stynes, M., O'Riordan, E., 10.1006/jmaa.1997.5581, J. Math. Anal. Appl. 214 (1997), 36-54. (1997) Zbl0917.65088MR1645503DOI10.1006/jmaa.1997.5581
  23. Stynes, M., Tobiska, L., 10.1137/S0036142902404728, SIAM J. Numer. Anal. 41 (2003), 1620-1642. (2003) Zbl1055.65121MR2035000DOI10.1137/S0036142902404728
  24. Xu, J., 10.1137/S0036142992232949, SIAM J. Numer. Anal. 33 (1996), 1759-1777. (1996) Zbl0860.65119MR1411848DOI10.1137/S0036142992232949
  25. Yserentant, H., 10.1007/BF01389538, Numer. Math. 49 (1986), 379-412. (1986) Zbl0625.65109MR0853662DOI10.1007/BF01389538
  26. Zenger, C., Sparse grids, In: Parallel Algorithms for Partial Differential Equations (Proc. 6th GAMM-Seminar, Kiel, 1990). Notes Numer. Fluid Mech. 31 (1991), 241-251. (1991) Zbl0763.65091MR1167882
  27. Zhang, Z., 10.1090/S0025-5718-03-01486-8, Math. Comput. 72 (2003), 1147-1177. (2003) Zbl1019.65091MR1972731DOI10.1090/S0025-5718-03-01486-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.