Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations
Applications of Mathematics (2009)
- Volume: 54, Issue: 3, page 267-283
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYan, Ningning. "Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations." Applications of Mathematics 54.3 (2009): 267-283. <http://eudml.org/doc/37820>.
@article{Yan2009,
abstract = {In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.},
author = {Yan, Ningning},
journal = {Applications of Mathematics},
keywords = {optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement},
language = {eng},
number = {3},
pages = {267-283},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations},
url = {http://eudml.org/doc/37820},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Yan, Ningning
TI - Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 267
EP - 283
AB - In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
LA - eng
KW - optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement
UR - http://eudml.org/doc/37820
ER -
References
top- Alt, W., 10.1007/BF01449031, Appl. Math. Optimization 12 (1984), 15-27. (1984) MR0756510DOI10.1007/BF01449031
- Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press Cambridge (1997). (1997) Zbl0899.65077MR1464941
- Babuška, I., A. K. Aziz (eds.), The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press New York (1972). (1972) MR0347104
- Becker, R., Kapp, H., Rannacher, R., 10.1137/S0363012999351097, SIAM J. Control Optim. 39 (2000), 113-132. (2000) Zbl0967.65080MR1780911DOI10.1137/S0363012999351097
- Brunner, H., Yan, N., 10.1016/0377-0427(96)00012-X, J. Comput. Appl. Math. 67 (1996), 185-189. (1996) Zbl0857.65145MR1388148DOI10.1016/0377-0427(96)00012-X
- Brunner, H., Yan, N., 10.1007/s00211-005-0608-3, Numer. Math. 101 (2005), 1-27. (2005) Zbl1076.65057MR2194716DOI10.1007/s00211-005-0608-3
- Chen, Y., Liu, W., Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model. 3 (2006), 311-321. (2006) Zbl1125.49026MR2237885
- Chen, Y., Yi, N., Liu, W., 10.1137/070679703, SIAM J. Numer. Anal. 46 (2008), 2254-2275. (2008) Zbl1175.49003MR2421035DOI10.1137/070679703
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Du, L., Yan, N., High-accuracy finite element method for optimal control problem, J. Syst. Sci. Complex. 14 (2001), 106-110. (2001) Zbl0983.49022MR1836999
- Falk, F. S., 10.1016/0022-247X(73)90022-X, J. Math. Anal. Appl. 44 (1973), 28-47. (1973) Zbl0268.49036MR0686788DOI10.1016/0022-247X(73)90022-X
- French, D. A., King, J. T., 10.1080/01630569108816430, Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. (1991) Zbl0724.65069MR1143001DOI10.1080/01630569108816430
- Ge, L., Liu, W., Yang, D., An equivalent a posteriori error estimate for a constrained optimal control problem, (to appear).
- Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E., Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing Leyden (1976). (1976) MR0385645
- Kress, R., Linear Integral Equations, 2nd Edition, Springer New York (1999). (1999) MR1723850
- Li, R., Liu, W., Yan, N., 10.1007/s10915-007-9147-7, J. Sci. Comput. 33 (2007), 155-182. (2007) Zbl1128.65048MR2342593DOI10.1007/s10915-007-9147-7
- Yan, Q. Lin N., Structure and Analysis for Efficient Finite Element Methods, Publishers of Hebei University Hebei (1996), Chinese. (1996)
- Lin, Q., Zhang, S., Yan, N., 10.1023/A:1018925103993, Adv. Comput. Math. 9 (1998), 117-129. (1998) Zbl0920.65087MR1662762DOI10.1023/A:1018925103993
- Lions, J.-L., Optimal Control of Systems Governed by Partial Differential Equations, Springer Berlin (1971). (1971) Zbl0203.09001MR0271512
- Lions, J.-L., Some Methods in the Mathematical Analysis of Systems and their Control, Science Press Beijing (1981). (1981) Zbl0542.93034MR0664760
- Liu, W., Yan, N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press Beijing (2008). (2008)
- Liu, W., Yan, N., 10.1137/S0036142999352187, SIAM J. Numer. Anal. 39 (2001), 73-99. (2001) Zbl0988.49018MR1860717DOI10.1137/S0036142999352187
- Liu, W. B., Yan, N., 10.1023/A:1014239012739, Adv. Comput. Math. 15 (2001), 285-309. (2001) Zbl1008.49024MR1887737DOI10.1023/A:1014239012739
- Meyer, C., Rösch, A., 10.1137/S0363012903431608, SIAM J. Control Optim. 43 (2004), 970-985. (2004) Zbl1071.49023MR2114385DOI10.1137/S0363012903431608
- Neittaanmäki, P., Tiba, D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Marcel Dekker New York (1994). (1994) MR1275836
- Tiba, D., Lectures on the Optimal Control of Elliptic Equations, University of Jyväskylä Press Jyväskylä (1995). (1995)
- Yan, N., Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, Science Press Beijing (2008). (2008)
- Yan, N., Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems, Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419. (2004)
- Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya., Integral Equations. A Reference Text, Noordhoff International Publishing Leyden (1975). (1975)
- Zienkiewicz, O. C., Zhu, J. Z., 10.1002/nme.1620330702, Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. (1992) Zbl0769.73085DOI10.1002/nme.1620330702
- Zienkiewicz, O. C., Zhu, J. Z., 10.1002/nme.1620330702, Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. (1992) Zbl0769.73085DOI10.1002/nme.1620330702
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.