Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations

Ningning Yan

Applications of Mathematics (2009)

  • Volume: 54, Issue: 3, page 267-283
  • ISSN: 0862-7940

Abstract

top
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.

How to cite

top

Yan, Ningning. "Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations." Applications of Mathematics 54.3 (2009): 267-283. <http://eudml.org/doc/37820>.

@article{Yan2009,
abstract = {In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.},
author = {Yan, Ningning},
journal = {Applications of Mathematics},
keywords = {optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement},
language = {eng},
number = {3},
pages = {267-283},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations},
url = {http://eudml.org/doc/37820},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Yan, Ningning
TI - Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 267
EP - 283
AB - In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
LA - eng
KW - optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement
UR - http://eudml.org/doc/37820
ER -

References

top
  1. Alt, W., 10.1007/BF01449031, Appl. Math. Optimization 12 (1984), 15-27. (1984) MR0756510DOI10.1007/BF01449031
  2. Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press Cambridge (1997). (1997) Zbl0899.65077MR1464941
  3. Babuška, I., A. K. Aziz (eds.), The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press New York (1972). (1972) MR0347104
  4. Becker, R., Kapp, H., Rannacher, R., 10.1137/S0363012999351097, SIAM J. Control Optim. 39 (2000), 113-132. (2000) Zbl0967.65080MR1780911DOI10.1137/S0363012999351097
  5. Brunner, H., Yan, N., 10.1016/0377-0427(96)00012-X, J. Comput. Appl. Math. 67 (1996), 185-189. (1996) Zbl0857.65145MR1388148DOI10.1016/0377-0427(96)00012-X
  6. Brunner, H., Yan, N., 10.1007/s00211-005-0608-3, Numer. Math. 101 (2005), 1-27. (2005) Zbl1076.65057MR2194716DOI10.1007/s00211-005-0608-3
  7. Chen, Y., Liu, W., Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model. 3 (2006), 311-321. (2006) Zbl1125.49026MR2237885
  8. Chen, Y., Yi, N., Liu, W., 10.1137/070679703, SIAM J. Numer. Anal. 46 (2008), 2254-2275. (2008) Zbl1175.49003MR2421035DOI10.1137/070679703
  9. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland Amsterdam (1978). (1978) Zbl0383.65058MR0520174
  10. Du, L., Yan, N., High-accuracy finite element method for optimal control problem, J. Syst. Sci. Complex. 14 (2001), 106-110. (2001) Zbl0983.49022MR1836999
  11. Falk, F. S., 10.1016/0022-247X(73)90022-X, J. Math. Anal. Appl. 44 (1973), 28-47. (1973) Zbl0268.49036MR0686788DOI10.1016/0022-247X(73)90022-X
  12. French, D. A., King, J. T., 10.1080/01630569108816430, Numer. Funct. Anal. Appl. Optim. 12 (1991), 299-314. (1991) Zbl0724.65069MR1143001DOI10.1080/01630569108816430
  13. Ge, L., Liu, W., Yang, D., An equivalent a posteriori error estimate for a constrained optimal control problem, (to appear). 
  14. Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E., Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing Leyden (1976). (1976) MR0385645
  15. Kress, R., Linear Integral Equations, 2nd Edition, Springer New York (1999). (1999) MR1723850
  16. Li, R., Liu, W., Yan, N., 10.1007/s10915-007-9147-7, J. Sci. Comput. 33 (2007), 155-182. (2007) Zbl1128.65048MR2342593DOI10.1007/s10915-007-9147-7
  17. Yan, Q. Lin N., Structure and Analysis for Efficient Finite Element Methods, Publishers of Hebei University Hebei (1996), Chinese. (1996) 
  18. Lin, Q., Zhang, S., Yan, N., 10.1023/A:1018925103993, Adv. Comput. Math. 9 (1998), 117-129. (1998) Zbl0920.65087MR1662762DOI10.1023/A:1018925103993
  19. Lions, J.-L., Optimal Control of Systems Governed by Partial Differential Equations, Springer Berlin (1971). (1971) Zbl0203.09001MR0271512
  20. Lions, J.-L., Some Methods in the Mathematical Analysis of Systems and their Control, Science Press Beijing (1981). (1981) Zbl0542.93034MR0664760
  21. Liu, W., Yan, N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press Beijing (2008). (2008) 
  22. Liu, W., Yan, N., 10.1137/S0036142999352187, SIAM J. Numer. Anal. 39 (2001), 73-99. (2001) Zbl0988.49018MR1860717DOI10.1137/S0036142999352187
  23. Liu, W. B., Yan, N., 10.1023/A:1014239012739, Adv. Comput. Math. 15 (2001), 285-309. (2001) Zbl1008.49024MR1887737DOI10.1023/A:1014239012739
  24. Meyer, C., Rösch, A., 10.1137/S0363012903431608, SIAM J. Control Optim. 43 (2004), 970-985. (2004) Zbl1071.49023MR2114385DOI10.1137/S0363012903431608
  25. Neittaanmäki, P., Tiba, D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Marcel Dekker New York (1994). (1994) MR1275836
  26. Tiba, D., Lectures on the Optimal Control of Elliptic Equations, University of Jyväskylä Press Jyväskylä (1995). (1995) 
  27. Yan, N., Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, Science Press Beijing (2008). (2008) 
  28. Yan, N., Superconvergence and recovery type a posteriori error estimates for constrained convex optimal control problems, Advances in Scientific Computing and Applications Y. Lu, W. Sun, T. Tang Science Press Beijing/New York (2004), 408-419. (2004) 
  29. Zabreiko, P. P., Koshelev, A. I., Krasnosel'skii, M. A., Mikhlin, S. G., Rakovshchik, L. S., Stet'senko, V. Ya., Integral Equations. A Reference Text, Noordhoff International Publishing Leyden (1975). (1975) 
  30. Zienkiewicz, O. C., Zhu, J. Z., 10.1002/nme.1620330702, Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. (1992) Zbl0769.73085DOI10.1002/nme.1620330702
  31. Zienkiewicz, O. C., Zhu, J. Z., 10.1002/nme.1620330702, Int. J. Numer. Methods Eng. 33 (1992), Part 1: 1331-1364, Part 2: 1365-1382. (1992) Zbl0769.73085DOI10.1002/nme.1620330702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.