Existence results for non-linear singular integral equations with Hilbert kernel in Banach spaces

Mohmed H. Saleh; Samir M. Amer; Marwa H. Ahmed

Applications of Mathematics (2009)

  • Volume: 54, Issue: 4, page 337-349
  • ISSN: 0862-7940

Abstract

top
A class of non-linear singular integral equations with Hilbert kernel and a related class of quasi-linear singular integro-differential equations are investigated by applying Schauder's fixed point theorem in Banach spaces.

How to cite

top

Saleh, Mohmed H., Amer, Samir M., and Ahmed, Marwa H.. "Existence results for non-linear singular integral equations with Hilbert kernel in Banach spaces." Applications of Mathematics 54.4 (2009): 337-349. <http://eudml.org/doc/37824>.

@article{Saleh2009,
abstract = {A class of non-linear singular integral equations with Hilbert kernel and a related class of quasi-linear singular integro-differential equations are investigated by applying Schauder's fixed point theorem in Banach spaces.},
author = {Saleh, Mohmed H., Amer, Samir M., Ahmed, Marwa H.},
journal = {Applications of Mathematics},
keywords = {non-linear singular integral equation; Schauder's fixed point theorem; Banach space; Hilbert kernel; quasi-linear singular integro-differential equations; non-linear singular integral equation; Schauder's fixed point theorem; Hilbert kernel; quasi-linear singular integro-differential equations},
language = {eng},
number = {4},
pages = {337-349},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence results for non-linear singular integral equations with Hilbert kernel in Banach spaces},
url = {http://eudml.org/doc/37824},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Saleh, Mohmed H.
AU - Amer, Samir M.
AU - Ahmed, Marwa H.
TI - Existence results for non-linear singular integral equations with Hilbert kernel in Banach spaces
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 4
SP - 337
EP - 349
AB - A class of non-linear singular integral equations with Hilbert kernel and a related class of quasi-linear singular integro-differential equations are investigated by applying Schauder's fixed point theorem in Banach spaces.
LA - eng
KW - non-linear singular integral equation; Schauder's fixed point theorem; Banach space; Hilbert kernel; quasi-linear singular integro-differential equations; non-linear singular integral equation; Schauder's fixed point theorem; Hilbert kernel; quasi-linear singular integro-differential equations
UR - http://eudml.org/doc/37824
ER -

References

top
  1. Amer, S. M., Existence results for a class of non-linear singular integral equations with shift, Il Nuovo Cimento B 120 (2005), 313-333. (2005) MR2175853
  2. Amer, S. M., On the solvability of non-linear singular integral equation and integro-differential equations of Cauchy type (II), Proc. Math. Phys. Soc. Egypt No. 78 (2003), 91-110. (2003) MR2085958
  3. Gakhov, F. D., Boundary Value Problems, Dover Publ. New York (1990). (1990) Zbl0830.30026MR1106850
  4. Griffel, D. H., Applied Functional Analysis, John Wiley & Sons New York (1981). (1981) Zbl0461.46001MR0637334
  5. Gusejnov, A. I., Mukhtarov, Kh. Sh., Introduction to the Theory of Nonlinear Singular Integral Equations, Nauka Moscow (1980), Russian. (1980) Zbl0474.45003MR0591672
  6. Heikkilä, S., Reffett, K., 10.1016/j.na.2005.06.043, Nonlinear Anal., Theory, Methods Appl. 64 (2006), 1415-1436. (2006) MR2200151DOI10.1016/j.na.2005.06.043
  7. Junghanns, P., Weber, U., 10.4171/ZAA/537, Z. Anal. Anwend. 12 (1993), 683-698. (1993) Zbl0790.45004MR1264861DOI10.4171/ZAA/537
  8. Junghanns, P., Semmler, G., Weber, U., Wegert, E., 10.1002/mma.272, Math. Methods Appl. Sci. 24 (2001), 1275-1288. (2001) Zbl1003.45001MR1857679DOI10.1002/mma.272
  9. Ladopoulos, E. G., Zisis, V. A., 10.1016/S0362-546X(98)00347-2, Nonlinear Anal., Theory Methods Appl. 42 (2000), 277-290. (2000) Zbl0963.45008MR1773984DOI10.1016/S0362-546X(98)00347-2
  10. Ladopoulos, E. G., Zisis, V. A., 10.1023/A:1023058024885, Appl. Math. 42 (1997), 345-367. (1997) Zbl0906.76076MR1467554DOI10.1023/A:1023058024885
  11. Ladopoulos, E. G., Zisis, V. A., 10.1016/0362-546X(95)00008-J, Nonlinear Anal., Theory, Methods Appl. 26 (1996), 1293-1299. (1996) Zbl0856.65147MR1376104DOI10.1016/0362-546X(95)00008-J
  12. Ladopoulos, E. G., Non-linear singular integral equations in real elastodynamics by using Hilbert transformations, Nonlinear Anal., Real World Appl. 6 (2005), 531-536. (2005) MR2129562
  13. Lusternik, L. A., Sobolev, V. J., Elements of Functional Analysis, Gordon and Breach Science Publishers New York (1986). (1986) MR0350359
  14. Mikhlin, S. G., Prössdorf, S., Singular Integral Operators, Akademie-Verlag Berlin (1986). (1986) MR0881386
  15. Nassr-Eddine Tatar, On the integral inequality with a kernel singular in time and space, J. Inequal. Pure Appl. Math. 4 (2003). (2003) MR2051583
  16. Pogorzelski, W., Integral Equations and Their Applications, Vol. 1, Oxford Pergamon Press/PWN Oxford/Warszawa (1966). (1966) MR0201934
  17. L. von Wolfersdorf, 10.4171/ZAA/375, Zeitschrift Anal. Anwend. 8 (1989), 563-570. (1989) MR1050095DOI10.4171/ZAA/375
  18. L. von Wolfersdorf, 10.1002/mma.1670070136, Math. Methods Appl. Sci. 7 (1985), 493-517. (1985) Zbl0582.45019MR0827209DOI10.1002/mma.1670070136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.