Existence and uniqueness for non-linear singular integral equations used in fluid mechanics

E. G. Ladopoulos; V. A. Zisis

Applications of Mathematics (1997)

  • Volume: 42, Issue: 5, page 345-367
  • ISSN: 0862-7940

Abstract

top
Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further studied for non-linear singular integral equations over a finite number of arbitrarily ordered arcs. An application to fluid mechanics theory is finally given for the determination of the form of the profiles of a turbomachine in two-dimensional flow of an incompressible fluid.

How to cite

top

Ladopoulos, E. G., and Zisis, V. A.. "Existence and uniqueness for non-linear singular integral equations used in fluid mechanics." Applications of Mathematics 42.5 (1997): 345-367. <http://eudml.org/doc/32986>.

@article{Ladopoulos1997,
abstract = {Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further studied for non-linear singular integral equations over a finite number of arbitrarily ordered arcs. An application to fluid mechanics theory is finally given for the determination of the form of the profiles of a turbomachine in two-dimensional flow of an incompressible fluid.},
author = {Ladopoulos, E. G., Zisis, V. A.},
journal = {Applications of Mathematics},
keywords = {non-linear singular integral equations; existence and uniqueness theorems; Banach spaces; Hölder conditions; fluid mechanics; equations over finite set of contours; steady incompressible motion; turbomachines; equations over finite set of contours; steady incompressible motion; Banach spaces; Hölder conditions; turbomachines},
language = {eng},
number = {5},
pages = {345-367},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and uniqueness for non-linear singular integral equations used in fluid mechanics},
url = {http://eudml.org/doc/32986},
volume = {42},
year = {1997},
}

TY - JOUR
AU - Ladopoulos, E. G.
AU - Zisis, V. A.
TI - Existence and uniqueness for non-linear singular integral equations used in fluid mechanics
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 5
SP - 345
EP - 367
AB - Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further studied for non-linear singular integral equations over a finite number of arbitrarily ordered arcs. An application to fluid mechanics theory is finally given for the determination of the form of the profiles of a turbomachine in two-dimensional flow of an incompressible fluid.
LA - eng
KW - non-linear singular integral equations; existence and uniqueness theorems; Banach spaces; Hölder conditions; fluid mechanics; equations over finite set of contours; steady incompressible motion; turbomachines; equations over finite set of contours; steady incompressible motion; Banach spaces; Hölder conditions; turbomachines
UR - http://eudml.org/doc/32986
ER -

References

top
  1. 10.1016/0045-7825(87)90159-9, Comp. Meth. Appl. Mech. Engng 65 (1987), 253–266. (1987) MR0919245DOI10.1016/0045-7825(87)90159-9
  2. 10.1007/BF00537198, Ing. Archiv 58 (1988), 35–46. (1988) Zbl0627.73018DOI10.1007/BF00537198
  3. 10.1016/0013-7944(88)90075-6, J. Engrg. Fract. Mech. 31 (1988), 315–337. (1988) DOI10.1016/0013-7944(88)90075-6
  4. 10.1007/BF01174641, Acta Mech. 75 (1988), 275–285. (1988) Zbl0667.73072DOI10.1007/BF01174641
  5. 10.1016/0013-7944(87)90212-8, J. Engrg Fract. Mech. 28 (1987), 187–195. (1987) DOI10.1016/0013-7944(87)90212-8
  6. 10.1016/0093-6413(87)90039-5, Mech. Res. Commun. 14 (1987), 263–274. (1987) Zbl0635.73044DOI10.1016/0093-6413(87)90039-5
  7. 10.1016/0167-8442(87)90047-4, Theor. Appl. Fract. Mech. 8 (1987), 205–211. (1987) DOI10.1016/0167-8442(87)90047-4
  8. 10.1155/S0161171288000675, Internat. J. Math. Math. Scien. 11 (1988), 561–574. (1988) Zbl0665.65097MR0947288DOI10.1155/S0161171288000675
  9. Relativistic elastic stress analysis for moving frames, Rev. Roum. Sci. Tech., Méc. Appl. 36 (1991), 195–209. (1991) MR1171626
  10. 10.1016/0022-0396(82)90019-5, J. Diff. Eqns 44 (1982), 306–341. (1982) MR0657784DOI10.1016/0022-0396(82)90019-5
  11. 10.1007/BF00250722, Arch. Ration. Mech. Anal. 61 (1976), 307–351. (1976) MR0418580DOI10.1007/BF00250722
  12. Ordinary differential equations of nonlinear elasticity II: Existence and regularity for conservative boundary value problems, Arch. Ration. Mech. Anal. 61 (1976), 352–393. (1976) 
  13. 10.1007/BF00041087, J. Elasticity 7 (1977), 125–151. (1977) MR0451990DOI10.1007/BF00041087
  14. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977), 337-403. (1977) Zbl0368.73040MR0475169
  15. 10.1098/rsta.1982.0095, Phil. Trans. R. Soc. Lond. A 306 (1982), 557–611. (1982) Zbl0513.73020MR0703623DOI10.1098/rsta.1982.0095
  16. Remarques sur l’existence et la régularité des solutions d’elastostatique nonlinéaire, in: Recent Contributions to Nonlinear Partial Differential Equations, Pitman, Boston, 1981, pp. 50–62. (1981) MR0639745
  17. 10.5802/aif.280, Ann. Inst. Fourier 18 (1968), 115–175. (1968) Zbl0169.18602MR0270222DOI10.5802/aif.280
  18. A justification of a nonlinear model in plate theory, Comp. Meth. Appl. Mech. Engng 17 (1979), 227–258. (1979) MR0533827
  19. Injectivité presque partout, autocontact, et noninterpénétrabilité en élasticité non linéaire tridimensionnelle, C. R. Akad. Sci. Paris, Sér I 301 (1985), 621–624. (1985) MR0816644
  20. 10.1007/BF00250807, Arch. Ration. Mech. Anal. 97 (1987), 171–188. (1987) MR0862546DOI10.1007/BF00250807
  21. 10.1016/0022-0396(69)90118-1, J. Diff. Eqns 6 (1969), 71–86. (1969) Zbl0218.73054MR0241831DOI10.1016/0022-0396(69)90118-1
  22. Development of singularities in the motion of materials with fading memory, Arch. Ration. Mech. Anal. 91 (1985), 193–205. (1985) MR0806001
  23. 10.1090/qam/860899, Q. Appl. Math. 44 (1986), 463–474. (1986) MR0860899DOI10.1090/qam/860899
  24. 10.1137/0714021, SIAM J. Num. Anal. 14 (1977), 327–347. (1977) Zbl0365.65065MR0433914DOI10.1137/0714021
  25. The unified theory of variational principles in nonlinear elasticity, Arch. Mech. 32 (1980), 577–596. (1980) MR0619303
  26. 10.1090/qam/666668, Q. Appl. Math. 40 (1982), 113–127. (1982) Zbl0505.76008MR0666668DOI10.1090/qam/666668
  27. Solutions in the large for certain nonlinear parabolic systems, Anal. Non Lin. 2 (1985), 213–235. (1985) MR0797271
  28. 10.1007/BF00252129, Arch. Ration. Mech. Anal. 84 (1983), 99–137. (1983) Zbl0544.73056MR0713121DOI10.1007/BF00252129
  29. 10.1016/0022-0396(74)90021-7, J. Diff. Eqns 16 (1974), 373–393. (1974) Zbl0263.45010MR0377605DOI10.1016/0022-0396(74)90021-7
  30. 10.1137/0130050, SIAM J. Appl. Math. 30 (1976), 557–576. (1976) Zbl0346.34059MR0404818DOI10.1137/0130050
  31. 10.1090/qam/478939, Q. Appl. Math. 35 (1977), 21–33. (1977) MR0478939DOI10.1090/qam/478939
  32. Finite element approximation of a nonlinear parabolic problem, Comput. Math Appl. 4 (1987), 247–255. (1987) MR0518696
  33. 10.1016/0022-247X(82)90119-6, J. Math. Anal. Appl. 89 (1982), 598–611. (1982) Zbl0488.65074MR0677747DOI10.1016/0022-247X(82)90119-6
  34. 10.1090/qam/856179, Q. Appl. Math. 44 (1986), 255–264. (1986) Zbl0608.73022MR0856179DOI10.1090/qam/856179
  35. 10.1007/BF00280411, Arch. Ration. Mech. Anal. 97 (1987), 353–394. (1987) Zbl0656.73023MR0865845DOI10.1007/BF00280411
  36. 10.1007/BF00251248, Arch. Ration. Mech. Anal. 76 (1981), 97–133. (1981) Zbl0481.73009MR0629700DOI10.1007/BF00251248
  37. 10.1137/0511071, SIAM J. Math. Anal. 11 (1980), 793–812. (1980) Zbl0464.45010MR0586908DOI10.1137/0511071
  38. 10.4064/sm-2-1-171-180, Studia Math. 2 (1930), 171–180. (1930) DOI10.4064/sm-2-1-171-180
  39. On a boundary problem in the theory of analytic functions, Math. Sb. 41 (1934), 519–526. (1934) 
  40. 10.4064/fm-3-1-133-181, Fundam. Math. 3 (1922), 133–181. (1922) DOI10.4064/fm-3-1-133-181
  41. Un teorema generale sull’asistenza di elementi uniti in una transformazione functionale, Rend. Accad. Lincei 2 (1930). (1930) 
  42. Calculation of the Flow in Lattices of Profiles of Turbomachines, Mashgiz, Moscow, 1960. (Russian) (1960) 
  43. Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, Netherlands, 1953. (1953) Zbl0052.41402MR0058417
  44. Singular Integral Equations, Noordhoff, Groningen, Netherlands, 1972. (1972) MR0355494
  45. The Theory of Approximate Methods and their Application to the Numerical Solution of Singular Integral Equations, Noordhoff, Leyden, Netherlands, 1976. (1976) Zbl0346.65065MR0405045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.