Global solution to a generalized nonisothermal Ginzburg-Landau system

Nesrine Fterich

Applications of Mathematics (2010)

  • Volume: 55, Issue: 1, page 1-46
  • ISSN: 0862-7940

Abstract

top
The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an N 3 -dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with L 1 data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.

How to cite

top

Fterich, Nesrine. "Global solution to a generalized nonisothermal Ginzburg-Landau system." Applications of Mathematics 55.1 (2010): 1-46. <http://eudml.org/doc/37837>.

@article{Fterich2010,
abstract = {The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an $N \le 3$-dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with $L^1$ data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.},
author = {Fterich, Nesrine},
journal = {Applications of Mathematics},
keywords = {nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence and uniqueness results; renormalized solutions; Moser iterations; nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence; uniqueness; renormalized solution; Moser iterations},
language = {eng},
number = {1},
pages = {1-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global solution to a generalized nonisothermal Ginzburg-Landau system},
url = {http://eudml.org/doc/37837},
volume = {55},
year = {2010},
}

TY - JOUR
AU - Fterich, Nesrine
TI - Global solution to a generalized nonisothermal Ginzburg-Landau system
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 1
EP - 46
AB - The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an $N \le 3$-dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with $L^1$ data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.
LA - eng
KW - nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence and uniqueness results; renormalized solutions; Moser iterations; nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence; uniqueness; renormalized solution; Moser iterations
UR - http://eudml.org/doc/37837
ER -

References

top
  1. Adams, R. A., Sobolev Spaces, Academic Press New York (1975). (1975) Zbl0314.46030MR0450957
  2. Adams, R. A., Fournier, J., 10.1016/0022-247X(77)90173-1, J. Math. Anal. Appl. 61 (1977), 713-734. (1977) Zbl0385.46024MR0463902DOI10.1016/0022-247X(77)90173-1
  3. Agmon, S., Douglis, A., Nirenberg, L., 10.1002/cpa.3160120405, Commun. Pure Appl. Math. 12 (1959), 623-727 17 (1964), 35-92. (1964) MR0162050DOI10.1002/cpa.3160120405
  4. Alt, H. W., Pawlow, I., 10.1016/0167-2789(92)90078-2, Physica D 59 (1992), 389-416. (1992) Zbl0763.58031MR1192751DOI10.1016/0167-2789(92)90078-2
  5. Attouch, H., Variational Convergence for Functions and Operators, Pitman London (1984). (1984) Zbl0561.49012MR0773850
  6. Baiocchi, C., 10.1007/BF02412236, Ann. Mat. Pura Appl. 76 (1967), 233-304 Italian. (1967) Zbl0153.17202MR0223697DOI10.1007/BF02412236
  7. Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Leyden (1976). (1976) Zbl0328.47035MR0390843
  8. Blanchard, D., Francfort, G. A., A few results on a class of degenerate parabolic equations, Ann. Sc. Norm. Sup. Pisa 18 (1991), 213-249. (1991) Zbl0778.35046MR1129302
  9. Blanchard, D., Guibé, O., Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differ. Equ. 5 (2000), 1221-1252. (2000) MR1785674
  10. Blanchard, D., Redwane, H., 10.1016/S0021-7824(98)80067-6, J. Math. Pures Appl. 77 (1998), 117-151. (1998) Zbl0907.35070MR1614645DOI10.1016/S0021-7824(98)80067-6
  11. Bonfanti, G., Frémond, M., Luterotti, F., Global solution to a nonlinear system for inversible phase changes, Adv. Math. Sci. Appl. 10 (2000), 1-24. (2000) MR1769184
  12. Bonfanti, G., Frémond, M., Luterotti, F., Local solutions to the full model of phase transitions with dissipation, Adv. Math. Sci. Appl. 11 (2001), 791-810. (2001) MR1907467
  13. Bonfanti, G., Frémond, M., Luterotti, F., Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear Anal., Real World Appl. 5 (2004), 123-140. (2004) MR2004090
  14. Bonfanti, G., Luterotti, F., 10.3934/cpaa.2006.5.763, Commun. Pure Appl. Anal. 5 (2006), 763-777. (2006) Zbl1137.80010MR2246006DOI10.3934/cpaa.2006.5.763
  15. Brézis, H., Analyse fonctionnelle. Théorie et applications, Masson Paris (1983), French. (1983) MR0697382
  16. Colli, P., 10.1007/BF03167565, Japan J. Ind. Appl. Math. 9 (1992), 181-203. (1992) Zbl0757.34051MR1170721DOI10.1007/BF03167565
  17. Colli, P., Frémond, M., Klein, O., Global existence of a solution to phase field model for supercooling, Nonlinear Anal., Real World Appl. 2 (2001), 523-539. (2001) MR1858904
  18. Colli, P., Gilardi, G., Grasselli, M., Well-posedness of the weak formulation for the phase-field model with memory, Adv. Differ. Equ. 2 (1997), 487-508. (1997) Zbl1023.45501MR1441853
  19. Colli, P., Gilardi, G., Grasselli, M., Schimperna, G., Global existence for the conserved phase field model with memory and quadratic nonlinearity, Port. Math. (N.S.) 58 (2001), 159-170. (2001) Zbl0985.35094MR1836260
  20. Colli, P., Laurençot, Ph., 10.1216/jiea/1181074220, J. Integral Equations Appl. 10 (1998), 169-194. (1998) MR1646829DOI10.1216/jiea/1181074220
  21. Colli, P., Luterotti, F., Schimperna, G., Stefanelli, U., 10.1007/s00030-002-8127-8, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 255-276. (2002) Zbl1004.35061MR1917373DOI10.1007/s00030-002-8127-8
  22. Damlamian, A., 10.1080/03605307708820053, Commun. Partial Differ. Equations 2 (1977), 1017-1044. (1977) Zbl0399.35054MR0487015DOI10.1080/03605307708820053
  23. Damlamian, A., Kenmochi, N., 10.3934/dcds.1999.5.269, Discrete Contin. Dyn. Syst. 5 (1999), 269-278. (1999) MR1665795DOI10.3934/dcds.1999.5.269
  24. DiPerna, R. J., Lions, J.-L., 10.2307/1971423, Ann. Math. 130 (1989), 321-366. (1989) Zbl0698.45010MR1014927DOI10.2307/1971423
  25. DiPerna, R. J., Lions, J.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), 511-547. (1989) Zbl0696.34049MR1022305DOI10.1007/BF01393835
  26. Frémond, M., Non-Smooth Thermomechanics, Springer Berlin (2002). (2002) MR1885252
  27. Gurtin, M., 10.1016/0167-2789(95)00173-5, Physica D 92 (1996), 178-192. (1996) MR1387065DOI10.1016/0167-2789(95)00173-5
  28. Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasi-linear Equations of Parabolic Type. Translation of Mathematical Monographs, 23, AMS Providence (1968). (1968) 
  29. Laurençot, Ph., Schimperna, G., Stefanelli, U., 10.1016/S0022-247X(02)00127-0, J. Math. Anal. Appl. 271 (2002), 426-442. (2002) MR1923644DOI10.1016/S0022-247X(02)00127-0
  30. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Villars Paris (1969), French. (1969) Zbl0189.40603MR0259693
  31. Lions, J.-L., Magenes, E., Problèmes aux limites non homogènes et applications, Dunod Paris (1968), French. (1968) Zbl0165.10801
  32. Luterotti, F., Stefanelli, U., 10.4171/ZAA/1081, Z. Anal. Anwend. 21 (2002), 335-350. (2002) Zbl1003.80003MR1915265DOI10.4171/ZAA/1081
  33. Luterotti, F., Schimperna, G., Stefanelli, U., 10.1142/S0218202501001112, Math. Models Methods Appl. Sci. 11 (2001), 808-825. (2001) Zbl1013.35045MR1842227DOI10.1142/S0218202501001112
  34. Luterotti, F., Schimperna, G., Stefanelli, U., 10.1090/qam/1900495, Q. Appl. Math. 60 (2002), 301-316. (2002) Zbl1032.35109MR1900495DOI10.1090/qam/1900495
  35. Luterotti, F., Schimperna, G., Stefanelli, U., Local solution to Frémond's full model for irreversible phase transitions, In: Mathematical Models and Methods for Smart Materials. Proc. Conf., Cortona, Italy, June 25-29, 2001 M. Fabrizio, B. Lazzari, A. Mauro World Scientific River Edge (2002), 323-328. (2002) Zbl1049.35096MR2039276
  36. Miranville, A., Schimperna, G., 10.3934/dcdsb.2005.5.753, Discrete Contin. Dyn. Syst., Ser. B 5 (2005), 753-768. (2005) Zbl1140.80388MR2151731DOI10.3934/dcdsb.2005.5.753
  37. Miranville, A., Schimperna, G., 10.1007/s00028-005-0187-x, J. Evol. Equ. 5 (2005), 253-276. (2005) Zbl1074.35050MR2133444DOI10.1007/s00028-005-0187-x
  38. Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, III. Ser. 123 (1959), 115-162. (1959) Zbl0088.07601MR0109940
  39. Rakotoson, J. E., Rakotoson, J. M., Analyse fonctionnelle appliquée aux équations aux dérivées partielles, Presse Universitaires de France (1999), French. (1999) Zbl0929.46027MR1686529
  40. Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1978), 65-96. (1978) MR0916688DOI10.1007/BF01762360
  41. Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer New York (1988). (1988) Zbl0662.35001MR0953967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.