Global solution to a generalized nonisothermal Ginzburg-Landau system
Applications of Mathematics (2010)
- Volume: 55, Issue: 1, page 1-46
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFterich, Nesrine. "Global solution to a generalized nonisothermal Ginzburg-Landau system." Applications of Mathematics 55.1 (2010): 1-46. <http://eudml.org/doc/37837>.
@article{Fterich2010,
abstract = {The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an $N \le 3$-dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with $L^1$ data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.},
author = {Fterich, Nesrine},
journal = {Applications of Mathematics},
keywords = {nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence and uniqueness results; renormalized solutions; Moser iterations; nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence; uniqueness; renormalized solution; Moser iterations},
language = {eng},
number = {1},
pages = {1-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global solution to a generalized nonisothermal Ginzburg-Landau system},
url = {http://eudml.org/doc/37837},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Fterich, Nesrine
TI - Global solution to a generalized nonisothermal Ginzburg-Landau system
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 1
EP - 46
AB - The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an $N \le 3$-dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with $L^1$ data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.
LA - eng
KW - nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence and uniqueness results; renormalized solutions; Moser iterations; nonisothermal Ginzburg-Landau (Allen-Cahn) system; microforce balance; existence; uniqueness; renormalized solution; Moser iterations
UR - http://eudml.org/doc/37837
ER -
References
top- Adams, R. A., Sobolev Spaces, Academic Press New York (1975). (1975) Zbl0314.46030MR0450957
- Adams, R. A., Fournier, J., 10.1016/0022-247X(77)90173-1, J. Math. Anal. Appl. 61 (1977), 713-734. (1977) Zbl0385.46024MR0463902DOI10.1016/0022-247X(77)90173-1
- Agmon, S., Douglis, A., Nirenberg, L., 10.1002/cpa.3160120405, Commun. Pure Appl. Math. 12 (1959), 623-727 17 (1964), 35-92. (1964) MR0162050DOI10.1002/cpa.3160120405
- Alt, H. W., Pawlow, I., 10.1016/0167-2789(92)90078-2, Physica D 59 (1992), 389-416. (1992) Zbl0763.58031MR1192751DOI10.1016/0167-2789(92)90078-2
- Attouch, H., Variational Convergence for Functions and Operators, Pitman London (1984). (1984) Zbl0561.49012MR0773850
- Baiocchi, C., 10.1007/BF02412236, Ann. Mat. Pura Appl. 76 (1967), 233-304 Italian. (1967) Zbl0153.17202MR0223697DOI10.1007/BF02412236
- Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Leyden (1976). (1976) Zbl0328.47035MR0390843
- Blanchard, D., Francfort, G. A., A few results on a class of degenerate parabolic equations, Ann. Sc. Norm. Sup. Pisa 18 (1991), 213-249. (1991) Zbl0778.35046MR1129302
- Blanchard, D., Guibé, O., Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differ. Equ. 5 (2000), 1221-1252. (2000) MR1785674
- Blanchard, D., Redwane, H., 10.1016/S0021-7824(98)80067-6, J. Math. Pures Appl. 77 (1998), 117-151. (1998) Zbl0907.35070MR1614645DOI10.1016/S0021-7824(98)80067-6
- Bonfanti, G., Frémond, M., Luterotti, F., Global solution to a nonlinear system for inversible phase changes, Adv. Math. Sci. Appl. 10 (2000), 1-24. (2000) MR1769184
- Bonfanti, G., Frémond, M., Luterotti, F., Local solutions to the full model of phase transitions with dissipation, Adv. Math. Sci. Appl. 11 (2001), 791-810. (2001) MR1907467
- Bonfanti, G., Frémond, M., Luterotti, F., Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear Anal., Real World Appl. 5 (2004), 123-140. (2004) MR2004090
- Bonfanti, G., Luterotti, F., 10.3934/cpaa.2006.5.763, Commun. Pure Appl. Anal. 5 (2006), 763-777. (2006) Zbl1137.80010MR2246006DOI10.3934/cpaa.2006.5.763
- Brézis, H., Analyse fonctionnelle. Théorie et applications, Masson Paris (1983), French. (1983) MR0697382
- Colli, P., 10.1007/BF03167565, Japan J. Ind. Appl. Math. 9 (1992), 181-203. (1992) Zbl0757.34051MR1170721DOI10.1007/BF03167565
- Colli, P., Frémond, M., Klein, O., Global existence of a solution to phase field model for supercooling, Nonlinear Anal., Real World Appl. 2 (2001), 523-539. (2001) MR1858904
- Colli, P., Gilardi, G., Grasselli, M., Well-posedness of the weak formulation for the phase-field model with memory, Adv. Differ. Equ. 2 (1997), 487-508. (1997) Zbl1023.45501MR1441853
- Colli, P., Gilardi, G., Grasselli, M., Schimperna, G., Global existence for the conserved phase field model with memory and quadratic nonlinearity, Port. Math. (N.S.) 58 (2001), 159-170. (2001) Zbl0985.35094MR1836260
- Colli, P., Laurençot, Ph., 10.1216/jiea/1181074220, J. Integral Equations Appl. 10 (1998), 169-194. (1998) MR1646829DOI10.1216/jiea/1181074220
- Colli, P., Luterotti, F., Schimperna, G., Stefanelli, U., 10.1007/s00030-002-8127-8, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 255-276. (2002) Zbl1004.35061MR1917373DOI10.1007/s00030-002-8127-8
- Damlamian, A., 10.1080/03605307708820053, Commun. Partial Differ. Equations 2 (1977), 1017-1044. (1977) Zbl0399.35054MR0487015DOI10.1080/03605307708820053
- Damlamian, A., Kenmochi, N., 10.3934/dcds.1999.5.269, Discrete Contin. Dyn. Syst. 5 (1999), 269-278. (1999) MR1665795DOI10.3934/dcds.1999.5.269
- DiPerna, R. J., Lions, J.-L., 10.2307/1971423, Ann. Math. 130 (1989), 321-366. (1989) Zbl0698.45010MR1014927DOI10.2307/1971423
- DiPerna, R. J., Lions, J.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), 511-547. (1989) Zbl0696.34049MR1022305DOI10.1007/BF01393835
- Frémond, M., Non-Smooth Thermomechanics, Springer Berlin (2002). (2002) MR1885252
- Gurtin, M., 10.1016/0167-2789(95)00173-5, Physica D 92 (1996), 178-192. (1996) MR1387065DOI10.1016/0167-2789(95)00173-5
- Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasi-linear Equations of Parabolic Type. Translation of Mathematical Monographs, 23, AMS Providence (1968). (1968)
- Laurençot, Ph., Schimperna, G., Stefanelli, U., 10.1016/S0022-247X(02)00127-0, J. Math. Anal. Appl. 271 (2002), 426-442. (2002) MR1923644DOI10.1016/S0022-247X(02)00127-0
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Villars Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Lions, J.-L., Magenes, E., Problèmes aux limites non homogènes et applications, Dunod Paris (1968), French. (1968) Zbl0165.10801
- Luterotti, F., Stefanelli, U., 10.4171/ZAA/1081, Z. Anal. Anwend. 21 (2002), 335-350. (2002) Zbl1003.80003MR1915265DOI10.4171/ZAA/1081
- Luterotti, F., Schimperna, G., Stefanelli, U., 10.1142/S0218202501001112, Math. Models Methods Appl. Sci. 11 (2001), 808-825. (2001) Zbl1013.35045MR1842227DOI10.1142/S0218202501001112
- Luterotti, F., Schimperna, G., Stefanelli, U., 10.1090/qam/1900495, Q. Appl. Math. 60 (2002), 301-316. (2002) Zbl1032.35109MR1900495DOI10.1090/qam/1900495
- Luterotti, F., Schimperna, G., Stefanelli, U., Local solution to Frémond's full model for irreversible phase transitions, In: Mathematical Models and Methods for Smart Materials. Proc. Conf., Cortona, Italy, June 25-29, 2001 M. Fabrizio, B. Lazzari, A. Mauro World Scientific River Edge (2002), 323-328. (2002) Zbl1049.35096MR2039276
- Miranville, A., Schimperna, G., 10.3934/dcdsb.2005.5.753, Discrete Contin. Dyn. Syst., Ser. B 5 (2005), 753-768. (2005) Zbl1140.80388MR2151731DOI10.3934/dcdsb.2005.5.753
- Miranville, A., Schimperna, G., 10.1007/s00028-005-0187-x, J. Evol. Equ. 5 (2005), 253-276. (2005) Zbl1074.35050MR2133444DOI10.1007/s00028-005-0187-x
- Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, III. Ser. 123 (1959), 115-162. (1959) Zbl0088.07601MR0109940
- Rakotoson, J. E., Rakotoson, J. M., Analyse fonctionnelle appliquée aux équations aux dérivées partielles, Presse Universitaires de France (1999), French. (1999) Zbl0929.46027MR1686529
- Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1978), 65-96. (1978) MR0916688DOI10.1007/BF01762360
- Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer New York (1988). (1988) Zbl0662.35001MR0953967
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.