Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation
Applications of Mathematics (2010)
- Volume: 55, Issue: 3, page 197-219
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDucomet, Bernard. "Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation." Applications of Mathematics 55.3 (2010): 197-219. <http://eudml.org/doc/37844>.
@article{Ducomet2010,
abstract = {We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an $N$-body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is “exact” as $N$ tends to infinity.},
author = {Ducomet, Bernard},
journal = {Applications of Mathematics},
keywords = {time-dependent Hartree-Fock equation; nuclear matter; time-dependent Hartree-Fock equation; nuclear matter},
language = {eng},
number = {3},
pages = {197-219},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation},
url = {http://eudml.org/doc/37844},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Ducomet, Bernard
TI - Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 197
EP - 219
AB - We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an $N$-body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is “exact” as $N$ tends to infinity.
LA - eng
KW - time-dependent Hartree-Fock equation; nuclear matter; time-dependent Hartree-Fock equation; nuclear matter
UR - http://eudml.org/doc/37844
ER -
References
top- Amrein, W. O., Jauch, J. M., Sinha, K. B., Scattering Theory in Quantum Mechanics. Lecture Notes and Supplements in Physics, 16, W. A. Benjamin London (1977). (1977) MR0495999
- Bardos, C., Golse, F., Mauser, N. J., Weak coupling limit of the -particle Schrödinger equation, Methods Appl. Anal. 7 (2000), 275-293. (2000) Zbl1003.81027MR1869286
- Bardos, C., Golse, F., Gottlieb, A. D., Mauser, N. J., 10.1016/S0021-7824(03)00023-0, J. Math. Pures Appl., IX. Sér. 82 (2003), 665-683. (2003) Zbl1029.82022MR1996777DOI10.1016/S0021-7824(03)00023-0
- Bardos, C., Ducomet, B., Golse, F., Gottlieb, A. D., Mauser, N. J., 10.4310/CMS.2007.v5.n5.a2, Commun. Math. Sci. 1 (2007), 1-9. (2007) MR2301285DOI10.4310/CMS.2007.v5.n5.a2
- Bardos, C., Golse, F., Gottlieb, A. D., Mauser, N. J., Derivation of the time dependent Hartree-Fock equation with Coulomb potential, Preprint.
- Bardos, C., Erdős, L., Golse, F., Mauser, N. J., Yau, H.-T., 10.1016/S1631-073X(02)02253-7, C. R., Math. Acad. Sci. Paris 334 (2002), 515-520. (2002) MR1890644DOI10.1016/S1631-073X(02)02253-7
- Beiner, M., Flocard, H., Giai, N. Van, Quentin, P., 10.1016/0375-9474(75)90338-3, Nucl. Phys. A238 (1975), 29-69. (1975) DOI10.1016/0375-9474(75)90338-3
- Bitaud, L., Etude théorique de la fission des transactinides dans le cadre d'une approche microscopique, PhD. Thesis Université Paris-Sud Paris (1996). (1996)
- Bove, A., Prato, G. Da, Fano, G., 10.1007/BF01608633, Commun. Math. Phys. 49 (1976), 25-33. (1976) MR0456066DOI10.1007/BF01608633
- Catto, I., Some remarks on Hartree-type models in nuclear physics, In: Analyse mathématique de modèles de la Mécanique Quantique. PhD. Thesis Université Paris-Dauphine Paris (1992). (1992)
- Chabanat, E., Bonche, P., Haensel, P., Meyer, J., Schaeffer, R., 10.1016/S0375-9474(97)00596-4, Nucl. Phys. A627 (1997), 710-746. (1997) DOI10.1016/S0375-9474(97)00596-4
- Dechargé, J., Gogny, D., 10.1103/PhysRevC.21.1568, Phys. Rev. C 21 (1980), 1568-1593. (1980) DOI10.1103/PhysRevC.21.1568
- Ducomet, B., Weak interaction limit for a model of nuclear matter, Oberwolfach Reports No 47 (2006), 2819-2822. (2006)
- Erdős, L., Yau, H.-T., Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, arXiv:math-ph/0111042v3 22 May 2002. MR1926667
- Fetter, A. L., Walecka, J. D., Quantum Theory of Many-Particle Systems, McGraw Hill New York (1971). (1971)
- Golse, F., The mean-field limit for the dynamics of large particle systems, Proceedings of the conference on partial differential equations, Forges-les-Eaux, France, June 2-6, 2003 Université de Nantes Nantes (2003). (2003) MR2050595
- Kato, T., Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Am. Math. Soc. 70 (1951), 195-211. (1951) Zbl0044.42701MR0041010
- Knowles, A., Frölich, J., A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction, arXiv:0810.4282.
- Lions, P.-L., Gogny, D., 10.1051/m2an/1986200405711, RAIRO, Modélisation Math. Anal. Numér. 20 (1986), 571-637. (1986) Zbl0607.35078MR0877058DOI10.1051/m2an/1986200405711
- Mornas, L., Neutron stars in a Skyrme model with hyperons, arXiv:nucl-th/0407083 vl 23 Jul 2004.
- Ring, P., Schuck, P., The Nuclear Many-Body Problem, Springer Berlin (1980). (1980) MR0611683
- Serot, B. D., Walecka, J. D., The Relativistic Nuclear Many-body Problem. Adv. Nucl. Phys. 16, Plenum New York (1986). (1986)
- Spohn, H., Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys. 53 (1980), 600-640. (1980) Zbl0465.76069
- Vautherin, D., Brink, D. M., 10.1103/PhysRevC.5.626, Phys. Rev. C 5 (1972), 626-647. (1972) DOI10.1103/PhysRevC.5.626
- Winter, C. Van, Brascamp, H. J., The -body problem with spin-orbit or Coulomb interactions, Comm. Math. Phys. 11 (1968), 19-55. (1968) MR0260334
- Winter, C. Van, Brascamp, H. J., The -body problem with spin-orbit or Coulomb interactions, Comm. Math. Phys. 11 (1968), 19-55. (1968) MR0260334
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.