Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay; Rakhi Bhattacharyya

Applications of Mathematics (2010)

  • Volume: 55, Issue: 3, page 221-240
  • ISSN: 0862-7940

Abstract

top
We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the daily variation in nutrient recycling and deduce the stability criteria of the variable delay model. A comparison of the variable delay model with the constant delay one is performed to unearth the biological relevance of oscillating delay in some real world ecological situations. Numerical simulations are done in support of analytical results.

How to cite

top

Mukhopadhyay, Banibrata, and Bhattacharyya, Rakhi. "Modeling the role of constant and time varying recycling delay on an ecological food chain." Applications of Mathematics 55.3 (2010): 221-240. <http://eudml.org/doc/37845>.

@article{Mukhopadhyay2010,
abstract = {We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the daily variation in nutrient recycling and deduce the stability criteria of the variable delay model. A comparison of the variable delay model with the constant delay one is performed to unearth the biological relevance of oscillating delay in some real world ecological situations. Numerical simulations are done in support of analytical results.},
author = {Mukhopadhyay, Banibrata, Bhattacharyya, Rakhi},
journal = {Applications of Mathematics},
keywords = {autotroph; herbivore; nutrient recycling; global stability; Hopf-bifurcation; variable delay; two-timing expansion; autotroph; herbivore; nutrient recycling; global stability; Hopf-bifurcation; variable delay; two-timing expansion},
language = {eng},
number = {3},
pages = {221-240},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modeling the role of constant and time varying recycling delay on an ecological food chain},
url = {http://eudml.org/doc/37845},
volume = {55},
year = {2010},
}

TY - JOUR
AU - Mukhopadhyay, Banibrata
AU - Bhattacharyya, Rakhi
TI - Modeling the role of constant and time varying recycling delay on an ecological food chain
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 221
EP - 240
AB - We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the daily variation in nutrient recycling and deduce the stability criteria of the variable delay model. A comparison of the variable delay model with the constant delay one is performed to unearth the biological relevance of oscillating delay in some real world ecological situations. Numerical simulations are done in support of analytical results.
LA - eng
KW - autotroph; herbivore; nutrient recycling; global stability; Hopf-bifurcation; variable delay; two-timing expansion; autotroph; herbivore; nutrient recycling; global stability; Hopf-bifurcation; variable delay; two-timing expansion
UR - http://eudml.org/doc/37845
ER -

References

top
  1. Bandyopadhyay, M., Bhattacharyya, R., Mukhopadhyay, B., 10.1016/j.ecolmodel.2003.10.030, Ecol. Model. 176 (2004), 201-209. (2004) DOI10.1016/j.ecolmodel.2003.10.030
  2. Beltrami, E., Carroll, T. O., 10.1007/BF00168802, J. Math. Biol. 32 (1994), 857-863. (1994) Zbl0825.92122DOI10.1007/BF00168802
  3. Benson, D. L., Sherratt, J. A., Maini, P. K., 10.1007/BF02460888, Bull. Math. Biol. 55 (1993), 365-384. (1993) Zbl0758.92003DOI10.1007/BF02460888
  4. Benson, D. L., Maini, P. K., Sherratt, J. A., 10.1016/0895-7177(93)90025-T, Math. Comp. Model. 17 (1993), 29-34. (1993) Zbl0784.92004MR1236162DOI10.1016/0895-7177(93)90025-T
  5. Beretta, E., Bischi, G. I., Solimano, F., 10.1007/BF00171521, J. Math. Biol. 28 (1990), 99-111. (1990) Zbl0665.45006MR1036414DOI10.1007/BF00171521
  6. Bhattacharyya, R., Mukhopadhyay, B., 10.1142/S021833900300097X, J. Biol. Syst. 11 (2003), 351-364. (2003) Zbl1041.92038DOI10.1142/S021833900300097X
  7. Bischi, G. I., 10.1016/0025-5564(92)90043-V, Math. Biosci. 109 (1992), 151-175. (1992) DOI10.1016/0025-5564(92)90043-V
  8. Colinvaux, P., Ecology II, John Wiley & Sons Chichester (1993). (1993) 
  9. Crawley, M. J., Herbivory. The dynamics of animal plant interaction. Studies in Ecology Vol. 10, University of California Press Berkley (1983). (1983) 
  10. Angelis, D. I. De, Bartell, S. M., Brenkert, A. L., 10.1086/285011, Amer. Naturalist 134 (1989), 778-805. (1989) DOI10.1086/285011
  11. Angelis, D. L. De, Dynamics of Nutrient Recycling and Food Webs, Chapman & Hall London (1992). (1992) 
  12. Farkas, M., Freedman, H. I., 10.1016/0022-247X(89)90303-X, J. Math. Anal. Appl. 138 (1989), 461-472. (1989) Zbl0661.92021MR0991036DOI10.1016/0022-247X(89)90303-X
  13. Ghosh, D., Sarkar, A. K., 10.1080/00207729708929385, Int. J. Syst. Sci. 28 (1997), 259-264. (1997) Zbl0874.92033DOI10.1080/00207729708929385
  14. Ghosh, D., Sarkar, A. K., 10.1016/S0304-3800(97)00203-2, Ecol. Model. 107 (1998), 25-33. (1998) DOI10.1016/S0304-3800(97)00203-2
  15. Ghosh, D., Sarkar, A. K., 10.1007/BF03009951, Korean J. Comput. Appl. Math. 6 (1999), 589-599. (1999) Zbl0938.92033MR1710208DOI10.1007/BF03009951
  16. Hallam, T. G., 10.1007/BF00276122, J. Math. Biol. 5 (1978), 261-280. (1978) Zbl0379.92015MR0645277DOI10.1007/BF00276122
  17. Hassard, B. D., Kazarinoff, N. D., Wan, Y.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press Cambridge (1981). (1981) Zbl0474.34002MR0603442
  18. Holling, C. S., 10.4039/entm9745fv, Mem. Entomol. Soc. Can. 45 (1965), 1-60. (1965) DOI10.4039/entm9745fv
  19. Jang, S. R.-J., 10.1007/s002850050179, J. Math. Biol. 40 (2000), 229-250. (2000) Zbl0998.92039MR1752127DOI10.1007/s002850050179
  20. Kreysig, E., Introductory Functional Analysis with Applications, John Wiley & Sons New York (1978). (1978) MR0467220
  21. Ludwig, D., Jones, D. D., Holling, C. S., 10.2307/3939, J. Anim. Econ. 47 (1978), 315-332. (1978) DOI10.2307/3939
  22. Maini, P. K., Benson, D. L., Sherratt, J. A., 10.1093/imammb/9.3.197, IMA J. Math. Appl. Med. Biol. 9 (1992), 197-213. (1992) Zbl0767.92004MR1202777DOI10.1093/imammb/9.3.197
  23. Mukherjee, D., Ray, S., Sinha, D. K., 10.1142/S0218339000000183, J. Biol. Syst. 8 (2000), 255-261. (2000) Zbl1009.92036DOI10.1142/S0218339000000183
  24. Mukopadhyay, B., Bhattacharyya, R., 10.1007/s10867-005-2306-x, J. Biol. Phys. 31 (2005), 3-22. (2005) DOI10.1007/s10867-005-2306-x
  25. Mukopadhyay, B., Bhattacharyya, R., 10.1016/j.ecolmodel.2006.04.005, Ecol. Model. 198 (2006), 163-173. (2006) DOI10.1016/j.ecolmodel.2006.04.005
  26. Mukhopadhyay, B., Bhattacharyya, R., 10.1007/s11538-005-9007-2, Bull. Math. Biol. 68 (2006), 293-313. (2006) MR2224770DOI10.1007/s11538-005-9007-2
  27. Muratori, S., Rinaldi, S., 10.1137/0152097, SIAM J. Appl. Math. 52 (1992), 1688-1706. (1992) Zbl0774.92024MR1191357DOI10.1137/0152097
  28. Nisbet, R. M., Mckinstry, J., Gurney, W. S. C., 10.1016/0025-5564(83)90030-5, Math. Biosci. 64 (1983), 99-113. (1983) Zbl0524.92027DOI10.1016/0025-5564(83)90030-5
  29. Pardo, O., 10.1142/S0218339000000122, J. Biol. Syst. 8 (2000), 195-209. (2000) DOI10.1142/S0218339000000122
  30. Powell, T., Richardson, P. J., 10.1086/284352, Am. Nat. 125 (1985), 431-463. (1985) DOI10.1086/284352
  31. Ruan, S., 10.1007/BF00161202, J. Math. Biol. 31 (1993), 633-654. (1993) Zbl0779.92021MR1237092DOI10.1007/BF00161202
  32. Ruan, S., 10.1016/0362-546X(95)93092-I, Nonlinear Anal., Theory Methods Appl. 24 (1995), 575-585. (1995) Zbl0830.34067MR1315696DOI10.1016/0362-546X(95)93092-I
  33. Ruan, S., 10.1006/jtbi.2000.2196, J. Theor. Biol. 208 (2001), 15-26. (2001) DOI10.1006/jtbi.2000.2196
  34. Ruan, S., Wolkowicz, G., Uniform persistence in plankton models with delayed nutrient recycling, Can. Appl. Math. Q. 3 (1995), 219-235. (1995) MR1360033
  35. Sarkar, A. K., Mitra, D., Roy, S., Roy, A. B., 10.1016/0304-3800(91)90146-R, Ecol. Model. 53 (1991), 147-156. (1991) DOI10.1016/0304-3800(91)90146-R
  36. Sarkar, A. K., Roy, A. B., 10.1016/0304-3800(93)90018-N, Ecol. Model. 68 (1993), 213-226. (1993) DOI10.1016/0304-3800(93)90018-N
  37. Sikder, A., Roy, A. B., 10.1016/0893-9659(93)90042-L, Appl. Math. Lett. 6 (1993), 91-95. (1993) MR1347294DOI10.1016/0893-9659(93)90042-L
  38. Schley, D., Gourley, S. A., 10.1007/s002850000034, J. Math. Biol. 40 (2000), 500-524. (2000) Zbl0961.92026MR1770938DOI10.1007/s002850000034
  39. Sherratt, J. A., 10.1007/BF00169566, J. Math. Biol. 33 (1995), 295-308. (1995) Zbl0812.92024MR1331510DOI10.1007/BF00169566
  40. Sherratt, J. A., 10.1017/S0956792500001893, Eur. J. Appl. Math. 6 (1995), 355-372. (1995) Zbl0847.35066MR1343087DOI10.1017/S0956792500001893
  41. Smith, O. L., Food Webs, Chapman & Hall London (1982). (1982) 
  42. Svirezhev, Y. M., Logofet, D. O., Stability of Biological Communities, Mir Moscow (1983). (1983) MR0723326
  43. Whittaker, R. H., Communities and Ecosystems, Macmillan New York (1975). (1975) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.