A non commutative generalization of -autonomous lattices
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 3, page 725-740
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEmanovský, P., and Rachůnek, Jiří. "A non commutative generalization of $\star $-autonomous lattices." Czechoslovak Mathematical Journal 58.3 (2008): 725-740. <http://eudml.org/doc/37864>.
@article{Emanovský2008,
abstract = {Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals.},
author = {Emanovský, P., Rachůnek, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\star $-autonomous lattice; pseudo $\star $-autonomous lattice; residuated lattice; ideal; normal ideal; congruence; -autonomous lattice; pseudo -autonomous lattice; residuated lattice; ideal; normal ideal; congruence},
language = {eng},
number = {3},
pages = {725-740},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A non commutative generalization of $\star $-autonomous lattices},
url = {http://eudml.org/doc/37864},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Emanovský, P.
AU - Rachůnek, Jiří
TI - A non commutative generalization of $\star $-autonomous lattices
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 725
EP - 740
AB - Pseudo $\star $-autonomous lattices are non-commutative generalizations of $\star $-autonomous lattices. It is proved that the class of pseudo $\star $-autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo $\star $-autonomous lattices can be described as their normal ideals.
LA - eng
KW - $\star $-autonomous lattice; pseudo $\star $-autonomous lattice; residuated lattice; ideal; normal ideal; congruence; -autonomous lattice; pseudo -autonomous lattice; residuated lattice; ideal; normal ideal; congruence
UR - http://eudml.org/doc/37864
ER -
References
top- Blount, K., Tsinakis, C., 10.1142/S0218196703001511, Int. J. Algebra Comput. 13 (2003), 437-461. (2003) Zbl1048.06010MR2022118DOI10.1142/S0218196703001511
- Burris, S., Sankappanavar, H. P., A Course in Universal Algebra, Springer Berlin-Heidelberg-New York (1981). (1981) Zbl0478.08001MR0648287
- Galatos, N., Tsinakis, C., 10.1016/j.jalgebra.2004.07.002, J. Algebra 283 (2005), 254-291. (2005) Zbl1063.06008MR2102083DOI10.1016/j.jalgebra.2004.07.002
- Georgescu, G., Iorgulescu, A., Pseudo-MV algebras, Mult.-valued Logic 6 (2001), 95-135. (2001) Zbl1014.06008MR1817439
- Girard, J.-Y., 10.1016/0304-3975(87)90045-4, Theor. Comput. Sci. 50 (1987), 1-102. (1987) Zbl0647.03016MR0899269DOI10.1016/0304-3975(87)90045-4
- Jipsen, P., Tsinakis, C., A survey of residuated lattices, In: Ordered Algebraic Structures J. Martinez Kluwer Dordrecht (2002), 19-56. (2002) Zbl1070.06005MR2083033
- Leustean, I., 10.1007/s00153-005-0297-8, Arch. Math. Logic 45 (2006), 191-213. (2006) Zbl1096.03020MR2209743DOI10.1007/s00153-005-0297-8
- Paoli, F., Substructural Logic: A Primer, Kluwer Dordrecht (2002). (2002) MR2039844
- Paoli, F., 10.1007/s11225-005-2979-y, Stud. Log. 79 (2005), 283-304. (2005) MR2135036DOI10.1007/s11225-005-2979-y
- Paoli, F., 10.1007/s00500-005-0512-x, Soft Comput. 10 (2006), 607-617. (2006) MR2135036DOI10.1007/s00500-005-0512-x
- Rachůnek, J., 10.1023/A:1021766309509, Czechoslovak Math. J. 52 (2002), 255-273. (2002) MR1905434DOI10.1023/A:1021766309509
- Rachůnek, J., 10.1007/PL00012447, Algebra Univers. 48 (2002), 151-169. (2002) MR1929902DOI10.1007/PL00012447
- Yetter, D. N., 10.2307/2274953, J. Symb. Log. 55 (1990), 41-64. (1990) Zbl0701.03026MR1043543DOI10.2307/2274953
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.