On some types of radical classes
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 3, page 833-848
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJakubík, Ján. "On some types of radical classes." Czechoslovak Mathematical Journal 58.3 (2008): 833-848. <http://eudml.org/doc/37871>.
@article{Jakubík2008,
abstract = {Let $\mathfrak \{m\}$ be an infinite cardinal. We denote by $C_\mathfrak \{m\}$ the collection of all $\mathfrak \{m\}$-representable Boolean algebras. Further, let $C_\mathfrak \{m\}^0$ be the collection of all generalized Boolean algebras $B$ such that for each $b\in B$, the interval $[0,b]$ of $B$ belongs to $C_\mathfrak \{m\}$. In this paper we prove that $C_\mathfrak \{m\}^0$ is a radical class of generalized Boolean algebras. Further, we investigate some related questions concerning lattice ordered groups and generalized $MV$-algebras.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {Boolean algebra; generalized Boolean algebra; $\mathfrak \{m\}$-representability; lattice ordered group; generalized $MV$-algebra; radical class; Boolean algebra; generalized Boolean algebra; -representability; lattice-ordered group},
language = {eng},
number = {3},
pages = {833-848},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some types of radical classes},
url = {http://eudml.org/doc/37871},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Jakubík, Ján
TI - On some types of radical classes
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 833
EP - 848
AB - Let $\mathfrak {m}$ be an infinite cardinal. We denote by $C_\mathfrak {m}$ the collection of all $\mathfrak {m}$-representable Boolean algebras. Further, let $C_\mathfrak {m}^0$ be the collection of all generalized Boolean algebras $B$ such that for each $b\in B$, the interval $[0,b]$ of $B$ belongs to $C_\mathfrak {m}$. In this paper we prove that $C_\mathfrak {m}^0$ is a radical class of generalized Boolean algebras. Further, we investigate some related questions concerning lattice ordered groups and generalized $MV$-algebras.
LA - eng
KW - Boolean algebra; generalized Boolean algebra; $\mathfrak {m}$-representability; lattice ordered group; generalized $MV$-algebra; radical class; Boolean algebra; generalized Boolean algebra; -representability; lattice-ordered group
UR - http://eudml.org/doc/37871
ER -
References
top- Chang, C. C., On the representation of -complete Boolean algebras, Trans. Amer. Math. Soc. 85 (1957), 208-218. (1957) Zbl0080.25502MR0086792
- Conrad, P., -radical classes of lattice ordered groups, In: Proc. Conf. Carbondale, Lecture Notes Math 848 Springer Verlag New York (1981), 186-207. (1981) Zbl0455.06010MR0613186
- Conrad, P., Darnel, M. R., 10.1023/A:1013759300701, Czech. Math. J. 51 (2001), 395-413. (2001) Zbl0978.06011MR1844319DOI10.1023/A:1013759300701
- Darnel, M., Closure operators on radicals of lattice ordered groups, Czech. Math. J. 37 (1987), 51-64. (1987) MR0875127
- Dvurečenskij, A., 10.1017/S1446788700036806, J. Austral. Math. Soc. 72 (2002), 427-445. (2002) MR1902211DOI10.1017/S1446788700036806
- Georgescu, G., Iorgulescu, A., Pseudo -algebras: a noncommutative extension of -algebras, Proc. Fourth Int. Symp. Econ. Inf., Bucharest (1999), 961-968. (1999) Zbl0985.06007MR1730100
- Georgescu, G., Iorgulescu, A., Pseudo -algebras, Multiple Valued Logic 6 (2001), 95-135. (2001) Zbl1014.06008MR1817439
- Jakubík, J., Radical mappings and radical classes of lattice ordered groups, Symposia Math. 21 Academic Press New York-London (1977), 451-477. (1977) MR0491397
- Jakubík, J., 10.1023/A:1022885303504, Czech. Math. J. 48 (1998), 253-268. (1998) MR1624315DOI10.1023/A:1022885303504
- Jakubík, J., 10.1023/A:1022428713092, Czech. Math. J. 49 (1999), 191-211. (1999) MR1676805DOI10.1023/A:1022428713092
- Jakubík, J., Direct product decompositions of pseudo -algebras, Archivum Math. 37 (2001), 131-142. (2001) MR1838410
- Jakubík, J., 10.1023/A:1021711326115, Czech. Math. J. 52 (2002), 469-482. (2002) MR1923254DOI10.1023/A:1021711326115
- Loomis, L. H., 10.1090/S0002-9904-1947-08866-2, Bull. Amer. Math. Soc. 53 (1947), 757-760. (1947) Zbl0033.01103MR0021084DOI10.1090/S0002-9904-1947-08866-2
- Pierce, R. S., 10.1090/S0002-9939-1959-0106862-6, Proc. Amer. Math. Soc. 10 (1959), 42-50. (1959) Zbl0091.03102MR0106862DOI10.1090/S0002-9939-1959-0106862-6
- Rachůnek, J., 10.1023/A:1021766309509, Czech. Math. J. 52 (2002), 255-273. (2002) MR1905434DOI10.1023/A:1021766309509
- Scott, D., A new characterization of -representable Boolean algebras, Bull. Amer. Math. Soc. 61 (1955), 522-523. (1955)
- E. C. Smith, Jr., 10.2307/1969602, Ann. Math. 64 (1956), 551-561. (1956) Zbl0074.02105MR0086047DOI10.2307/1969602
- Sikorski, R., 10.4064/fm-35-1-247-258, Fund. Math. 35 (1958), 247-258. (1958) MR0028374DOI10.4064/fm-35-1-247-258
- Sikorski, R., 10.4064/fm-48-1-91-103, Fund. Math. 48 (1959), 95-103. (1959) MR0109799DOI10.4064/fm-48-1-91-103
- Sikorski, R., Boolean Algebras, Second Edition Springer Verlag Berlin-Göttingen-Heidelberg-New York (1964). (1964) Zbl0123.01303
- Ton, Dao Rong, Product radical classes of -groups, Czech. Math. J. 42 (1992), 129-142. (1992) MR1152176
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.