On Lipschitz and d.c. surfaces of finite codimension in a Banach space
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 3, page 849-864
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZajíček, Luděk. "On Lipschitz and d.c. surfaces of finite codimension in a Banach space." Czechoslovak Mathematical Journal 58.3 (2008): 849-864. <http://eudml.org/doc/37872>.
@article{Zajíček2008,
abstract = {Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated $\sigma $-ideals are studied. These $\sigma $-ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.},
author = {Zajíček, Luděk},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space; Lipschitz surface; d.c. surface; multiplicity points of monotone operators; singular points of convex functions; Aronszajn null sets; multiplicity points of monotone operators; singular points of convex functions; Aronszajn null sets},
language = {eng},
number = {3},
pages = {849-864},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Lipschitz and d.c. surfaces of finite codimension in a Banach space},
url = {http://eudml.org/doc/37872},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Zajíček, Luděk
TI - On Lipschitz and d.c. surfaces of finite codimension in a Banach space
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 849
EP - 864
AB - Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated $\sigma $-ideals are studied. These $\sigma $-ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
LA - eng
KW - Banach space; Lipschitz surface; d.c. surface; multiplicity points of monotone operators; singular points of convex functions; Aronszajn null sets; multiplicity points of monotone operators; singular points of convex functions; Aronszajn null sets
UR - http://eudml.org/doc/37872
ER -
References
top- Berkson, B., 10.2140/pjm.1963.13.7, Pacific J. Math. 13 (1963), 7-22. (1963) MR0152869DOI10.2140/pjm.1963.13.7
- Benyamini, Y., Lindenstrauss, J., Geometric Nonlinear Functional Analysis, Vol. 1, Colloqium publications (American Mathematical Society); v. 48, Providence, Rhode Island (2000). (2000) MR1727673
- Duda, J., On inverses of -convex mappings, Comment. Math. Univ. Carolin. 42 (2001), 281-297. (2001) Zbl1053.47522MR1832147
- Erdös, P., 10.1090/S0002-9904-1946-08514-6, Bull. Amer. Math. Soc. 52 (1946), 107-109. (1946) MR0015144DOI10.1090/S0002-9904-1946-08514-6
- Gohberg, I. C., Krein, M. G., Fundamental aspects of defect numbers, root numbers, and indexes of linear operators, Uspekhi Mat. Nauk 12 (1957), 43-118 Russian. (1957) MR0096978
- Hartman, P., 10.2140/pjm.1959.9.707, Pacific J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
- Heisler, M., Some aspects of differentiability in geometry on Banach spaces, Ph.D. thesis, Charles University, Prague (1996). (1996)
- Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berin (1976). (1976) Zbl0342.47009MR0407617
- Kopecká, E., Malý, J., Remarks on delta-convex functions, Comment. Math. Univ. Carolin. 31 (1990), 501-510. (1990) MR1078484
- Largillier, A., 10.1016/0893-9659(94)90033-7, Appl. Math. Lett. 7 (1994), 67-71. (1994) Zbl0804.46026MR1350148DOI10.1016/0893-9659(94)90033-7
- Lindenstrauss, J., Preiss, D., Fréchet differentiability of Lipschitz functions (a survey), In: Recent Progress in Functional Analysis, 19-42, North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). (2001) Zbl1037.46043MR1861745
- Lindenstrauss, J., Preiss, D., 10.4007/annals.2003.157.257, Annals Math. 157 (2003), 257-288. (2003) Zbl1171.46313MR1954267DOI10.4007/annals.2003.157.257
- Preiss, D., Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls, Collection: Geometry of Banach spaces (Strobl, 1989), 237-244, London Math. Soc. Lecture Note Ser. 158 (1990). (1990) MR1110199
- Preiss, D., Zajíček, L., 10.1007/BF02773371, Israel J. Math. 125 (2001), 1-27. (2001) MR1853802DOI10.1007/BF02773371
- Veselý, L., On the multiplicity points of monotone operators on separable Banach spaces, Comment. Math. Univ. Carolin. 27 (1986), 551-570. (1986) MR0873628
- Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989). (1989) MR1016045
- Zajíček, L., On the points of multivaluedness of metric projections in separable Banach spaces, Comment. Math. Univ. Carolin. 19 (1978), 513-523. (1978) MR0508958
- Zajíček, L., On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolin. 19 (1978), 179-189. (1978) MR0493541
- Zajíček, L., On the differentiation of convex functions in finite and infinite dimensional spaces, Czech. Math. J. 29 (1979), 340-348. (1979) MR0536060
- Zajíček, L., Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space, Czech. Math. J. 33 (1983), 292-308. (1983) MR0699027
- Zajíček, L., On -porous sets in abstract spaces, Abstract Appl. Analysis 2005 (2005), 509-534. (2005) MR2201041
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.