Properties of distance functions on convex surfaces and applications
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 247-269
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRataj, Jan, and Zajíček, Luděk. "Properties of distance functions on convex surfaces and applications." Czechoslovak Mathematical Journal 61.1 (2011): 247-269. <http://eudml.org/doc/196902>.
@article{Rataj2011,
abstract = {If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop \{\{\rm dist\}\}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop \{\{\rm dist\}\}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.},
author = {Rataj, Jan, Zajíček, Luděk},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary; distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; -boundary},
language = {eng},
number = {1},
pages = {247-269},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Properties of distance functions on convex surfaces and applications},
url = {http://eudml.org/doc/196902},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Rataj, Jan
AU - Zajíček, Luděk
TI - Properties of distance functions on convex surfaces and applications
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 247
EP - 269
AB - If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop {{\rm dist}}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop {{\rm dist}}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.
LA - eng
KW - distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary; distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; -boundary
UR - http://eudml.org/doc/196902
ER -
References
top- Aleksandrov, A. D., Intrinsic Geometry of Convex Surfaces, OGIZ Moscow-Leningrad (1948), Russian. (1948) MR0029518
- Aleksandrov, A. D., On surfaces represented as the difference of convex functions, Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20 Russian. (1949) MR0048059
- Burago, D., Burago, Y., Ivanov, S., 10.1090/gsm/033, American Mathematical Society (AMS) Providence (2001). (2001) MR1835418DOI10.1090/gsm/033
- Buyalo, S. V., Shortest arcs on convex hypersurfaces of Riemannian spaces, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 66 (1976), 114-132 Russian. (1976) MR0643664
- Cannarsa, P., Sinestrari, C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser Boston (2004). (2004) MR2041617
- Ferry, S., 10.4064/fm-90-3-199-210, Fund. Math. 90 (1976), 199-210. (1976) Zbl0324.57003MR0413112DOI10.4064/fm-90-3-199-210
- Fu, J. H. G., 10.1215/S0012-7094-85-05254-8, Duke Math. J. 52 (1985), 1025-1046. (1985) Zbl0592.52002MR0816398DOI10.1215/S0012-7094-85-05254-8
- Hartman, P., 10.2140/pjm.1959.9.707, Pac. J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
- Hug, D., Last, G., Weil, W., A local Steiner-type formula for general closed sets and applications, Math. Z. 246 (2004), 237-272. (2004) Zbl1059.53061MR2031455
- Kuwae, K., Machigashira, Y., Shioya, T., 10.1007/s002090100252, Math. Z. 238 (2001), 269-316. (2001) Zbl1001.53017MR1865418DOI10.1007/s002090100252
- Mantegazza, C., Mennucci, A. C., 10.1007/s00245-002-0736-4, Appl. Math. Optimization 47 (2003), 1-25. (2003) MR1941909DOI10.1007/s00245-002-0736-4
- Milka, A. D., Shortest arcs on convex surfaces, Dokl. Akad. Nauk SSSR 248 (1979), 34-36 Russian. (1979) Zbl0441.53047MR0549365
- Mordukhovich, B. S., Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330, Springer Berlin (2006). (2006) MR2191744
- Otsu, Y., Shioya, T., 10.4310/jdg/1214455075, J. Differ. Geom. 39 (1994), 629-658. (1994) Zbl0808.53061MR1274133DOI10.4310/jdg/1214455075
- Perelman, G., DC structure on Alexandrov space, Unpublished preprint (1995), available at www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf. (1995)
- Petrunin, A., Semiconcave functions in Alexandrov's geometry, In: Surveys in Differential Geometry, Vol. XI J. Cheeger, K. Grove International Press Somerville (2007), 137-201. (2007) Zbl1166.53001MR2408266
- Plaut, C., Metric spaces of curvature , In: Handbook of Geometric Topology Elsevier Amsterdam (2002), 819-898. (2002) Zbl1011.57002MR1886682
- Rataj, J., Zajíček, L., Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces, arXiv 0911.4020.
- Reshetnyak, Yu. G., On a generalization of convex surfaces, Math. Sb., N. Ser. 40 (1956), 381-398 Russian. (1956) MR0083757
- Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Cambrigde University Press Cambrigde (1993). (1993) Zbl0798.52001MR1216521
- Shiohama, K., Tanaka, M., Cut loci and distance spheres on Alexandrov surfaces, In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, A. L. Besse Société Mathématique de France Paris (1996), 531-559. (1996) Zbl0874.53032MR1427770
- Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Diss. Math. Vol. 289 (1989). (1989) MR1016045
- Walter, R., 10.1007/BF02992922, Abh. Math. Semin. Univ. Hamb. 45 (1976), 263-282. (1976) Zbl0332.53026MR0417984DOI10.1007/BF02992922
- Whitehead, J. H. C., 10.2307/1970286, Ann. Math. 73 (1961), 154-212. (1961) Zbl0096.37802MR0124917DOI10.2307/1970286
- Zajíček, L., On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348. (1979) MR0536060
- Zajíček, L., Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space, Czechoslovak Math. J. 33 (1983), 292-308. (1983) MR0699027
- Zajíček, L., 10.1007/s10587-008-0055-2, Czechoslovak Math. J. 58 (2008), 849-864. (2008) MR2455942DOI10.1007/s10587-008-0055-2
- Zamfirescu, T., 10.2140/pjm.2004.217.375, Pac. J. Math. 217 (2004), 375-386. (2004) Zbl1068.53048MR2109940DOI10.2140/pjm.2004.217.375
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.