Properties of distance functions on convex surfaces and applications

Jan Rataj; Luděk Zajíček

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 247-269
  • ISSN: 0011-4642

Abstract

top
If X is a convex surface in a Euclidean space, then the squared intrinsic distance function dist 2 ( x , y ) is DC (d.c., delta-convex) on X × X in the only natural extrinsic sense. An analogous result holds for the squared distance function dist 2 ( x , F ) from a closed set F X . Applications concerning r -boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.

How to cite

top

Rataj, Jan, and Zajíček, Luděk. "Properties of distance functions on convex surfaces and applications." Czechoslovak Mathematical Journal 61.1 (2011): 247-269. <http://eudml.org/doc/196902>.

@article{Rataj2011,
abstract = {If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop \{\{\rm dist\}\}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop \{\{\rm dist\}\}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.},
author = {Rataj, Jan, Zajíček, Luděk},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary; distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; -boundary},
language = {eng},
number = {1},
pages = {247-269},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Properties of distance functions on convex surfaces and applications},
url = {http://eudml.org/doc/196902},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Rataj, Jan
AU - Zajíček, Luděk
TI - Properties of distance functions on convex surfaces and applications
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 247
EP - 269
AB - If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop {{\rm dist}}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop {{\rm dist}}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.
LA - eng
KW - distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; $r$-boundary; distance function; convex surface; Alexandrov space; DC manifold; ambiguous locus; skeleton; -boundary
UR - http://eudml.org/doc/196902
ER -

References

top
  1. Aleksandrov, A. D., Intrinsic Geometry of Convex Surfaces, OGIZ Moscow-Leningrad (1948), Russian. (1948) MR0029518
  2. Aleksandrov, A. D., On surfaces represented as the difference of convex functions, Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20 Russian. (1949) MR0048059
  3. Burago, D., Burago, Y., Ivanov, S., 10.1090/gsm/033, American Mathematical Society (AMS) Providence (2001). (2001) MR1835418DOI10.1090/gsm/033
  4. Buyalo, S. V., Shortest arcs on convex hypersurfaces of Riemannian spaces, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 66 (1976), 114-132 Russian. (1976) MR0643664
  5. Cannarsa, P., Sinestrari, C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser Boston (2004). (2004) MR2041617
  6. Ferry, S., 10.4064/fm-90-3-199-210, Fund. Math. 90 (1976), 199-210. (1976) Zbl0324.57003MR0413112DOI10.4064/fm-90-3-199-210
  7. Fu, J. H. G., 10.1215/S0012-7094-85-05254-8, Duke Math. J. 52 (1985), 1025-1046. (1985) Zbl0592.52002MR0816398DOI10.1215/S0012-7094-85-05254-8
  8. Hartman, P., 10.2140/pjm.1959.9.707, Pac. J. Math. 9 (1959), 707-713. (1959) Zbl0093.06401MR0110773DOI10.2140/pjm.1959.9.707
  9. Hug, D., Last, G., Weil, W., A local Steiner-type formula for general closed sets and applications, Math. Z. 246 (2004), 237-272. (2004) Zbl1059.53061MR2031455
  10. Kuwae, K., Machigashira, Y., Shioya, T., 10.1007/s002090100252, Math. Z. 238 (2001), 269-316. (2001) Zbl1001.53017MR1865418DOI10.1007/s002090100252
  11. Mantegazza, C., Mennucci, A. C., 10.1007/s00245-002-0736-4, Appl. Math. Optimization 47 (2003), 1-25. (2003) MR1941909DOI10.1007/s00245-002-0736-4
  12. Milka, A. D., Shortest arcs on convex surfaces, Dokl. Akad. Nauk SSSR 248 (1979), 34-36 Russian. (1979) Zbl0441.53047MR0549365
  13. Mordukhovich, B. S., Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330, Springer Berlin (2006). (2006) MR2191744
  14. Otsu, Y., Shioya, T., 10.4310/jdg/1214455075, J. Differ. Geom. 39 (1994), 629-658. (1994) Zbl0808.53061MR1274133DOI10.4310/jdg/1214455075
  15. Perelman, G., DC structure on Alexandrov space, Unpublished preprint (1995), available at www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf. (1995) 
  16. Petrunin, A., Semiconcave functions in Alexandrov's geometry, In: Surveys in Differential Geometry, Vol. XI J. Cheeger, K. Grove International Press Somerville (2007), 137-201. (2007) Zbl1166.53001MR2408266
  17. Plaut, C., Metric spaces of curvature k , In: Handbook of Geometric Topology Elsevier Amsterdam (2002), 819-898. (2002) Zbl1011.57002MR1886682
  18. Rataj, J., Zajíček, L., Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces, arXiv 0911.4020. 
  19. Reshetnyak, Yu. G., On a generalization of convex surfaces, Math. Sb., N. Ser. 40 (1956), 381-398 Russian. (1956) MR0083757
  20. Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Cambrigde University Press Cambrigde (1993). (1993) Zbl0798.52001MR1216521
  21. Shiohama, K., Tanaka, M., Cut loci and distance spheres on Alexandrov surfaces, In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, A. L. Besse Société Mathématique de France Paris (1996), 531-559. (1996) Zbl0874.53032MR1427770
  22. Veselý, L., Zajíček, L., Delta-convex mappings between Banach spaces and applications, Diss. Math. Vol. 289 (1989). (1989) MR1016045
  23. Walter, R., 10.1007/BF02992922, Abh. Math. Semin. Univ. Hamb. 45 (1976), 263-282. (1976) Zbl0332.53026MR0417984DOI10.1007/BF02992922
  24. Whitehead, J. H. C., 10.2307/1970286, Ann. Math. 73 (1961), 154-212. (1961) Zbl0096.37802MR0124917DOI10.2307/1970286
  25. Zajíček, L., On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348. (1979) MR0536060
  26. Zajíček, L., Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space, Czechoslovak Math. J. 33 (1983), 292-308. (1983) MR0699027
  27. Zajíček, L., 10.1007/s10587-008-0055-2, Czechoslovak Math. J. 58 (2008), 849-864. (2008) MR2455942DOI10.1007/s10587-008-0055-2
  28. Zamfirescu, T., 10.2140/pjm.2004.217.375, Pac. J. Math. 217 (2004), 375-386. (2004) Zbl1068.53048MR2109940DOI10.2140/pjm.2004.217.375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.