Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space H 1 n + 1 ( - 1 )

Guoxin Wei; Qiuli Liu; Young Jin Suh

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 2, page 343-351
  • ISSN: 0011-4642

Abstract

top
In this paper, we study closed k -maximal spacelike hypersurfaces M n in anti-de Sitter space H 1 n + 1 ( - 1 ) with two distinct principal curvatures and give some integral formulas about these hypersurfaces.

How to cite

top

Wei, Guoxin, Liu, Qiuli, and Suh, Young Jin. "Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$." Czechoslovak Mathematical Journal 59.2 (2009): 343-351. <http://eudml.org/doc/37927>.

@article{Wei2009,
abstract = {In this paper, we study closed $k$-maximal spacelike hypersurfaces $M^n$ in anti-de Sitter space $H_1^\{n+1\}(-1)$ with two distinct principal curvatures and give some integral formulas about these hypersurfaces.},
author = {Wei, Guoxin, Liu, Qiuli, Suh, Young Jin},
journal = {Czechoslovak Mathematical Journal},
keywords = {anti-de Sitter space; $k$th mean curvature; Gauss equations; anti-de Sitter space; th mean curvature; Gauss equation},
language = {eng},
number = {2},
pages = {343-351},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^\{n+1\}(-1)$},
url = {http://eudml.org/doc/37927},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Wei, Guoxin
AU - Liu, Qiuli
AU - Suh, Young Jin
TI - Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 343
EP - 351
AB - In this paper, we study closed $k$-maximal spacelike hypersurfaces $M^n$ in anti-de Sitter space $H_1^{n+1}(-1)$ with two distinct principal curvatures and give some integral formulas about these hypersurfaces.
LA - eng
KW - anti-de Sitter space; $k$th mean curvature; Gauss equations; anti-de Sitter space; th mean curvature; Gauss equation
UR - http://eudml.org/doc/37927
ER -

References

top
  1. Calabi, E., Examples of Bernstein problems for nonlinear equations, Proc. Symp. Pure Math. 15 (1970), 223-230. (1970) MR0264210
  2. Cao, L., Wei, G., 10.1016/j.jmaa.2006.06.075, J. Math. Anal. Appl. 329 (2007), 408-414. (2007) Zbl1112.53052MR2306811DOI10.1016/j.jmaa.2006.06.075
  3. Cheng, S. Y., Yau, S. T., 10.2307/1970963, Ann. Math. 104 (1976), 407-419. (1976) Zbl0352.53021MR0431061DOI10.2307/1970963
  4. Hu, Z., Scherfner, M., Zhai, S., 10.1016/j.difgeo.2007.06.008, Differ. Geom. Appl. 25 (2007), 594-611. (2007) Zbl1134.53034MR2373937DOI10.1016/j.difgeo.2007.06.008
  5. Ishihara, T., 10.1307/mmj/1029003815, Mich. Math. J. 35 (1988), 345-352. (1988) Zbl0682.53055MR0978304DOI10.1307/mmj/1029003815
  6. Li, H., 10.1007/BF01444243, Math. Ann. 305 (1996), 665-672. (1996) Zbl0864.53040MR1399710DOI10.1007/BF01444243
  7. Li, H., 10.1007/BF02559973, Ark. Mat. 35 (1997), 327-351. (1997) Zbl0920.53028MR1478784DOI10.1007/BF02559973
  8. Omori, H., 10.2969/jmsj/01920205, J. Math. Soc. Japan. 19 (1967), 205-214. (1967) Zbl0154.21501MR0215259DOI10.2969/jmsj/01920205
  9. Otsuki, T., 10.2307/2373502, Am. J. Math. 92 (1970), 145-173. (1970) Zbl0196.25102MR0264565DOI10.2307/2373502
  10. Perdomo, O., 10.1007/s00013-003-4834-6, Arch. Math. 82 (2004), 180-184. (2004) Zbl1062.53055MR2047672DOI10.1007/s00013-003-4834-6
  11. Wang, Q. L., 10.1007/s00605-002-0039-5, Monatsh. Math. 140 (2003), 163-167. (2003) Zbl1066.53112MR2017667DOI10.1007/s00605-002-0039-5
  12. Wei, G. X., 10.1007/s00605-005-0378-0, Monatsh. Math. 149 (2006), 343-350. (2006) Zbl1110.53050MR2284653DOI10.1007/s00605-005-0378-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.