Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space
Guoxin Wei; Qiuli Liu; Young Jin Suh
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 2, page 343-351
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWei, Guoxin, Liu, Qiuli, and Suh, Young Jin. "Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$." Czechoslovak Mathematical Journal 59.2 (2009): 343-351. <http://eudml.org/doc/37927>.
@article{Wei2009,
abstract = {In this paper, we study closed $k$-maximal spacelike hypersurfaces $M^n$ in anti-de Sitter space $H_1^\{n+1\}(-1)$ with two distinct principal curvatures and give some integral formulas about these hypersurfaces.},
author = {Wei, Guoxin, Liu, Qiuli, Suh, Young Jin},
journal = {Czechoslovak Mathematical Journal},
keywords = {anti-de Sitter space; $k$th mean curvature; Gauss equations; anti-de Sitter space; th mean curvature; Gauss equation},
language = {eng},
number = {2},
pages = {343-351},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^\{n+1\}(-1)$},
url = {http://eudml.org/doc/37927},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Wei, Guoxin
AU - Liu, Qiuli
AU - Suh, Young Jin
TI - Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 343
EP - 351
AB - In this paper, we study closed $k$-maximal spacelike hypersurfaces $M^n$ in anti-de Sitter space $H_1^{n+1}(-1)$ with two distinct principal curvatures and give some integral formulas about these hypersurfaces.
LA - eng
KW - anti-de Sitter space; $k$th mean curvature; Gauss equations; anti-de Sitter space; th mean curvature; Gauss equation
UR - http://eudml.org/doc/37927
ER -
References
top- Calabi, E., Examples of Bernstein problems for nonlinear equations, Proc. Symp. Pure Math. 15 (1970), 223-230. (1970) MR0264210
- Cao, L., Wei, G., 10.1016/j.jmaa.2006.06.075, J. Math. Anal. Appl. 329 (2007), 408-414. (2007) Zbl1112.53052MR2306811DOI10.1016/j.jmaa.2006.06.075
- Cheng, S. Y., Yau, S. T., 10.2307/1970963, Ann. Math. 104 (1976), 407-419. (1976) Zbl0352.53021MR0431061DOI10.2307/1970963
- Hu, Z., Scherfner, M., Zhai, S., 10.1016/j.difgeo.2007.06.008, Differ. Geom. Appl. 25 (2007), 594-611. (2007) Zbl1134.53034MR2373937DOI10.1016/j.difgeo.2007.06.008
- Ishihara, T., 10.1307/mmj/1029003815, Mich. Math. J. 35 (1988), 345-352. (1988) Zbl0682.53055MR0978304DOI10.1307/mmj/1029003815
- Li, H., 10.1007/BF01444243, Math. Ann. 305 (1996), 665-672. (1996) Zbl0864.53040MR1399710DOI10.1007/BF01444243
- Li, H., 10.1007/BF02559973, Ark. Mat. 35 (1997), 327-351. (1997) Zbl0920.53028MR1478784DOI10.1007/BF02559973
- Omori, H., 10.2969/jmsj/01920205, J. Math. Soc. Japan. 19 (1967), 205-214. (1967) Zbl0154.21501MR0215259DOI10.2969/jmsj/01920205
- Otsuki, T., 10.2307/2373502, Am. J. Math. 92 (1970), 145-173. (1970) Zbl0196.25102MR0264565DOI10.2307/2373502
- Perdomo, O., 10.1007/s00013-003-4834-6, Arch. Math. 82 (2004), 180-184. (2004) Zbl1062.53055MR2047672DOI10.1007/s00013-003-4834-6
- Wang, Q. L., 10.1007/s00605-002-0039-5, Monatsh. Math. 140 (2003), 163-167. (2003) Zbl1066.53112MR2017667DOI10.1007/s00605-002-0039-5
- Wei, G. X., 10.1007/s00605-005-0378-0, Monatsh. Math. 149 (2006), 343-350. (2006) Zbl1110.53050MR2284653DOI10.1007/s00605-005-0378-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.