Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space
Qiaoling Wang, Chang Yu Xia (2007)
Czechoslovak Mathematical Journal
Similarity:
In this paper we study the topological and metric rigidity of hypersurfaces in , the -dimensional hyperbolic space of sectional curvature . We find conditions to ensure a complete connected oriented hypersurface in to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic.