On the Schröder-Bernstein problem for Carathéodory vector lattices

Ján Jakubík

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 2, page 419-430
  • ISSN: 0011-4642

Abstract

top
In this note we prove that there exists a Carathéodory vector lattice V such that V V 3 and V V 2 . This yields that V is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.

How to cite

top

Jakubík, Ján. "On the Schröder-Bernstein problem for Carathéodory vector lattices." Czechoslovak Mathematical Journal 59.2 (2009): 419-430. <http://eudml.org/doc/37932>.

@article{Jakubík2009,
abstract = {In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {vecrot lattice; Boolean algebra; internal direct factor; vector lattice; Boolean algebra; internal direct factor},
language = {eng},
number = {2},
pages = {419-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Schröder-Bernstein problem for Carathéodory vector lattices},
url = {http://eudml.org/doc/37932},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Jakubík, Ján
TI - On the Schröder-Bernstein problem for Carathéodory vector lattices
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 419
EP - 430
AB - In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
LA - eng
KW - vecrot lattice; Boolean algebra; internal direct factor; vector lattice; Boolean algebra; internal direct factor
UR - http://eudml.org/doc/37932
ER -

References

top
  1. Birkhoff, G., Lattice Theory, Am. Math. Soc. Providence (1967). (1967) Zbl0153.02501
  2. Cater, F. S., 10.1023/B:CMAJ.0000027226.39057.1f, Czech. Math. J. 52 (2002), 717-720. (2002) Zbl1011.12002MR1940052DOI10.1023/B:CMAJ.0000027226.39057.1f
  3. Chang, C. C., Cardinal and ordinal multiplication of relation types, Proc. Sympos. Pure Math., Vol. II Am. Math. Soc. Providence (1961), 123-128. (1961) Zbl0108.01101MR0130183
  4. Simone, A. De, Mundici, D., Navara, M., 10.1023/A:1026299723322, Czech. Math. J. 53 (2002), 437-447. (2002) MR1983464DOI10.1023/A:1026299723322
  5. Dvurečenskij, A., 10.1017/S1446788700003177, J. Austr. Math. Soc. 74 (2003), 121-143. (2003) Zbl1033.03036MR1948263DOI10.1017/S1446788700003177
  6. Galego, E. M., 10.4064/ba54-2-3, Bull. Pol. Acad. Sci., Math. 54 (2006), 113-124. (2006) Zbl1109.46011MR2266142DOI10.4064/ba54-2-3
  7. Galego, E. M., 10.1017/S0017089505002727, Glasg. Math. J. 47 (2005), 489-500. (2005) MR2202061DOI10.1017/S0017089505002727
  8. Goffman, C., Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions, Trans. Am. Math. Soc. 88 (1958), 107-120. (1958) Zbl0088.02602MR0097331
  9. Gowers, W. T., 10.1112/blms/28.3.297, Bull. Lond. Math. Soc. 28 (1996), 297-304. (1996) Zbl0863.46006MR1374409DOI10.1112/blms/28.3.297
  10. Hanf, W., 10.7146/math.scand.a-10496, Math. Scand. 5 (1957), 205-217. (1957) MR0108451DOI10.7146/math.scand.a-10496
  11. Jakubík, J., 10.4064/fm-74-2-85-98, Fundam. Math. 74 (1972), 85-98. (1972) MR0302528DOI10.4064/fm-74-2-85-98
  12. Jakubík, J., 10.1023/A:1022467218309, Czech. Math. J. 45 (1999), 517-526. (1999) MR1708370DOI10.1023/A:1022467218309
  13. Jakubík, J., 10.1023/B:CMAJ.0000027241.58807.5f, Czech. Math. J. 52 (2002), 881-888. (2002) MR1940067DOI10.1023/B:CMAJ.0000027241.58807.5f
  14. Jakubík, J., On Carathéodory vector lattices, Math. Slovaca 53 (2003), 479-503. (2003) MR2038515
  15. Jakubík, J., 10.1007/s00500-003-0318-7, Soft Comput. 8 (2004), 581-586. (2004) DOI10.1007/s00500-003-0318-7
  16. Kantorovich, L. V., Vulikh, B. Z., Pinsker, A. G., Functional Analysis in Semiordered Spaces, Gostekhizdat Moskva-Leningrad (1950), Russian. (1950) 
  17. Oger, F., 10.1016/0021-8693(87)90150-5, J. Algebra 109 (1987), 452-467. (1987) MR0902963DOI10.1016/0021-8693(87)90150-5
  18. Sikorski, R., 10.4064/cm-1-2-140-144, Colloq. Math. 1 (1948), 140-144. (1948) MR0027264DOI10.4064/cm-1-2-140-144
  19. Tarski, A., Cardinal Algebras, Oxford University Press New York (1949). (1949) Zbl0041.34502MR0029954
  20. Trnková, V., 10.2307/2043725, Proc. Am. Math. Soc. 80 (1980), 389-392. (1980) MR0580990DOI10.2307/2043725

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.