On orthogonally σ -complete lattice ordered groups

Ján Jakubík

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 4, page 881-888
  • ISSN: 0011-4642

Abstract

top
In this paper we prove a theorem of Cantor-Bernstein type for orthogonally σ -complete lattice ordered groups.

How to cite

top

Jakubík, Ján. "On orthogonally $\sigma $-complete lattice ordered groups." Czechoslovak Mathematical Journal 52.4 (2002): 881-888. <http://eudml.org/doc/30752>.

@article{Jakubík2002,
abstract = {In this paper we prove a theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete lattice ordered groups.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattice ordered group; orthogonal $\sigma $-completeness; direct factor; lattice ordered group; orthogonal -completeness; direct factor},
language = {eng},
number = {4},
pages = {881-888},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On orthogonally $\sigma $-complete lattice ordered groups},
url = {http://eudml.org/doc/30752},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Jakubík, Ján
TI - On orthogonally $\sigma $-complete lattice ordered groups
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 4
SP - 881
EP - 888
AB - In this paper we prove a theorem of Cantor-Bernstein type for orthogonally $\sigma $-complete lattice ordered groups.
LA - eng
KW - lattice ordered group; orthogonal $\sigma $-completeness; direct factor; lattice ordered group; orthogonal -completeness; direct factor
UR - http://eudml.org/doc/30752
ER -

References

top
  1. 10.4064/fm-74-2-85-98, Fund. Math. 74 (1972), 85–98. (1972) MR0302528DOI10.4064/fm-74-2-85-98
  2. Cantor-Bernstein theorem for lattice ordered groups, Czechoslovak Math.  J. 22(97) (1972), 159–175. (1972) MR0297666
  3. On complete lattice ordered groups with strong units, Czechoslovak Math.  J. 46(121) (1996), 221–230. (1996) MR1388611
  4. 10.1023/A:1022467218309, Czechoslovak Math.  J. 49(124) (1999), 517–526. (1999) MR1708370DOI10.1023/A:1022467218309
  5. Convex isomorphisms of archimedean lattice ordered groups, Mathware Soft Comput. 5 (1998), 49–56. (1998) MR1632739
  6. A generalization of theorem of Banach and Cantor-Bernstein, Coll. Mat. 1 (1948), 140–144. (1948) MR0027264
  7. Boolean algebras, Second edition, Springer Verlag, Berlin, 1964. (1964) Zbl0123.01303MR0126393
  8. To the theory of lattice ordered groups, Czechoslovak Math.  J. 6(81) (1956), 1–25. (Russian) (1956) 
  9. A Cantor-Bernstein theorem for σ -complete M V -algebras, (Preprint). 
  10. Cardinal Algebras, Oxford University Press, New York, London, 1949. (1949) Zbl0041.34502MR0029954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.