Evaluation of the sums
Ayşe Alaca; Şaban Alaca; Kenneth S. Williams
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 3, page 847-859
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAlaca, Ayşe, Alaca, Şaban, and Williams, Kenneth S.. "Evaluation of the sums $\sum \limits _{\begin{array}{c}m=1 \\ m\equiv a\hspace{4.44443pt}(\@mod \; 4)\end{array}}^{n-1} \sigma (m) \sigma (n-m) $." Czechoslovak Mathematical Journal 59.3 (2009): 847-859. <http://eudml.org/doc/37962>.
@article{Alaca2009,
abstract = {The convolution sum \[ \sum \limits \_\{\begin\{array\}\{c\}m=1 \\ m\equiv a\hspace\{10.0pt\}(\@mod \; 4)\end\{array\}\}^\{n-1\} \sigma (m) \sigma (n-m) \]
is evaluated for $a\in \lbrace 0,1,2,3\rbrace $ and all $n \in \mathbb \{N\}$. This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.},
author = {Alaca, Ayşe, Alaca, Şaban, Williams, Kenneth S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {convolution sums; sum of divisors function; theta functions; convolution sum; sum of divisors function; theta function},
language = {eng},
number = {3},
pages = {847-859},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Evaluation of the sums $\sum \limits _\{\begin\{array\}\{c\}m=1 \\ m\equiv a\hspace\{4.44443pt\}(\@mod \; 4)\end\{array\}\}^\{n-1\} \sigma (m) \sigma (n-m) $},
url = {http://eudml.org/doc/37962},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Alaca, Ayşe
AU - Alaca, Şaban
AU - Williams, Kenneth S.
TI - Evaluation of the sums $\sum \limits _{\begin{array}{c}m=1 \\ m\equiv a\hspace{4.44443pt}(\@mod \; 4)\end{array}}^{n-1} \sigma (m) \sigma (n-m) $
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 847
EP - 859
AB - The convolution sum \[ \sum \limits _{\begin{array}{c}m=1 \\ m\equiv a\hspace{10.0pt}(\@mod \; 4)\end{array}}^{n-1} \sigma (m) \sigma (n-m) \]
is evaluated for $a\in \lbrace 0,1,2,3\rbrace $ and all $n \in \mathbb {N}$. This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.
LA - eng
KW - convolution sums; sum of divisors function; theta functions; convolution sum; sum of divisors function; theta function
UR - http://eudml.org/doc/37962
ER -
References
top- Alaca, A., Alaca, S., Williams, K. S., 10.4064/aa135-4-3, Acta Arith. 135 (2008), 339-350. (2008) MR2465716DOI10.4064/aa135-4-3
- Berndt, B. C., Number Theory in the Spirit of Ramanujan, American Mathematical Society (AMS) Providence (2006). (2006) Zbl1117.11001MR2246314
- Cheng, N., Convolution sums involving divisor functions, M.Sc. thesis Carleton University Ottawa (2003). (2003)
- Cheng, N., Williams, K. S., 10.1017/S0013091503000956, Proc. Edinb. Math. Soc. 47 (2004), 561-572. (2004) Zbl1156.11301MR2096620DOI10.1017/S0013091503000956
- Huard, J. G., Ou, Z. M., Spearman, B. K., Williams, K. S., Elementary evaluation of certain convolution sums involving divisor functions, Number Theory for the Millenium II (Urbana, IL, 2000) A. K. Peters Natick (2002), 229-274. (2002) Zbl1062.11005MR1956253
- Williams, K. S., The convolution sum , Pac. J. Math. 228 (2006), 387-396. (2006) Zbl1130.11006MR2274527
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.